223 research outputs found
Nanoengineering Carbon Allotropes from Graphene
Monolithic structures can be built into graphene by the addition and
subsequent re-arrangement of carbon atoms. To this end, ad-dimers of carbon are
a particularly attractive building block because a number of emerging
technologies offer the promise of precisely placing them on carbon surfaces. In
concert with the more common Stone-Wales defect, repeating patterns can be
introduced to create as yet unrealized materials. The idea of building such
allotropes out of defects is new, and we demonstrate the technique by
constructing two-dimensional carbon allotropes known as haeckelite. We then
extend the idea to create a new class of membranic carbon allotropes that we
call \emph{dimerite}, composed exclusively of ad-dimer defects.Comment: 5 pages, 5 figure
Pressure-Induced Interlinking of Carbon Nanotubes
We predict new forms of carbon consisting of one and two dimensional networks
of interlinked single wall carbon nanotubes, some of which are energetically
more stable than van der Waals packing of the nanotubes on a hexagonal lattice.
These interlinked nanotubes are further transformed with higher applied
external pressures to more dense and complicated stable structures, in which
curvature-induced carbon sp re-hybridizations are formed. We also discuss
the energetics of the bond formation between nanotubes and the electronic
properties of these predicted novel structures.Comment: 4 pages, 4 postscript figures; To be appear in PR
Atomistic Simulations of Nanotube Fracture
The fracture of carbon nanotubes is studied by atomistic simulations. The
fracture behavior is found to be almost independent of the separation energy
and to depend primarily on the inflection point in the interatomic potential.
The rangle of fracture strians compares well with experimental results, but
predicted range of fracture stresses is marketly higher than observed. Various
plausible small-scale defects do not suffice to bring the failure stresses into
agreement with available experimental results. As in the experiments, the
fracture of carbon nanotubes is predicted to be brittle. The results show
moderate dependence of fracture strength on chirality.Comment: 12 pages, PDF, submitted to Phy. Rev.
Reversible Band Gap Engineering in Carbon Nanotubes by Radial Deformation
We present a systematic analysis of the effect of radial deformation on the
atomic and electronic structure of zigzag and armchair single wall carbon
nanotubes using the first principle plane wave method. The nanotubes were
deformed by applying a radial strain, which distorts the circular cross section
to an elliptical one. The atomic structure of the nanotubes under this strain
are fully optimized, and the electronic structure is calculated
self-consistently to determine the response of individual bands to the radial
deformation. The band gap of the insulating tube is closed and eventually an
insulator-metal transition sets in by the radial strain which is in the elastic
range. Using this property a multiple quantum well structure with tunable and
reversible electronic structure is formed on an individual nanotube and its
band-lineup is determined from first-principles. The elastic energy due to the
radial deformation and elastic constants are calculated and compared with
classical theories.Comment: To be appear in Phys. Rev. B, Apr 15, 200
Enhancement of Friction between Carbon Nanotubes: An Efficient Strategy to Strengthen Fibers
Interfacial friction plays a crucial role in the mechanical properties of
carbon nanotube based fibers, composites, and devices. Here we use molecular
dynamics simulation to investigate the pressure effect on the friction within
carbon nanotube bundles. It reveals that the intertube frictional force can be
increased by a factor of 1.5 ~ 4, depending on tube chirality and radius, when
all tubes collapse above a critical pressure and when the bundle remains
collapsed with unloading down to atmospheric pressure. Furthermore, the overall
cross-sectional area also decreases significantly for the collapsed structure,
making the bundle stronger. Our study suggests a new and efficient way to
reinforce nanotube fibers, possibly stronger than carbon fibers, for usage at
ambient conditions.Comment: revtex, 5 pages, accepted by ACS Nano 10 Dec 200
The European Photon Imaging Camera on XMM-Newton: The MOS Cameras
The EPIC focal plane imaging spectrometers on XMM-Newton use CCDs to record
the images and spectra of celestial X-ray sources focused by the three X-ray
mirrors. There is one camera at the focus of each mirror; two of the cameras
contain seven MOS CCDs, while the third uses twelve PN CCDs, defining a
circular field of view of 30 arcmin diameter in each case. The CCDs were
specially developed for EPIC, and combine high quality imaging with spectral
resolution close to the Fano limit. A filter wheel carrying three kinds of
X-ray transparent light blocking filter, a fully closed, and a fully open
position, is fitted to each EPIC instrument. The CCDs are cooled passively and
are under full closed loop thermal control. A radio-active source is fitted for
internal calibration. Data are processed on-board to save telemetry by removing
cosmic ray tracks, and generating X-ray event files; a variety of different
instrument modes are available to increase the dynamic range of the instrument
and to enable fast timing. The instruments were calibrated using laboratory
X-ray beams, and synchrotron generated monochromatic X-ray beams before launch;
in-orbit calibration makes use of a variety of celestial X-ray targets. The
current calibration is better than 10% over the entire energy range of 0.2 to
10 keV. All three instruments survived launch and are performing nominally in
orbit. In particular full field-of-view coverage is available, all electronic
modes work, and the energy resolution is close to pre-launch values. Radiation
damage is well within pre-launch predictions and does not yet impact on the
energy resolution. The scientific results from EPIC amply fulfil pre-launch
expectations.Comment: 9 pages, 11 figures, accepted for publication in the A&A Special
Issue on XMM-Newto
A new method for 2D gel spot alignment: application to the analysis of large sample sets in clinical proteomics
<p>Abstract</p> <p>Background</p> <p>In current comparative proteomics studies, the large number of images generated by 2D gels is currently compared using spot matching algorithms. Unfortunately, differences in gel migration and sample variability make efficient spot alignment very difficult to obtain, and, as consequence most of the software alignments return noisy gel matching which needs to be manually adjusted by the user.</p> <p>Results</p> <p>We present Sili2DGel an algorithm for automatic spot alignment that uses data from recursive gel matching and returns meaningful Spot Alignment Positions (SAP) for a given set of gels. In the algorithm, the data are represented by a graph and SAP by specific subgraphs. The results are returned under various forms (clickable synthetic gel, text file, etc.). We have applied Sili2DGel to study the variability of the urinary proteome from 20 healthy subjects.</p> <p>Conclusion</p> <p>Sili2DGel performs noiseless automatic spot alignment for variability studies (as well as classical differential expression studies) of biological samples. It is very useful for typical clinical proteomic studies with large number of experiments.</p
Influence of adding multiwalled carbon nanotubes on the adhesive strength of composite epoxy/sol–gel materials
The tensile shear strength of a composite epoxy/sol–gel system modified with different ratios of multiwall carbon nanotubes (MWCNTs) was evaluated using a mechanical testing machine. The experimental results showed that the shear strength increased when lower than ~0.07 wt% of MWCNTs were added in the composite solution. The increase of the shear strength was attributed to both the mechanical load transfer from the matrix to the MWCNTs and the high specific surface area of this material that increased the degree of crosslinking with other inorganic fillers in the formulation. However, a decrease in the adhesive shear strength was observed after more than ~0.07 wt% MWCNTs were added to the composite. The reason for this may be related to the high concentration of MWCNTs within the matrix leading to excessively high viscosity, dewetting of the substrate surfaces, and reduced bonding of MWCNTs with the
matrix, thereby limiting the strength. SEM observation of the fracture surfaces for composite epoxy/sol–gel adhesive materials with 0.01 wt% MWCNTs showed a mixed interfacial/cohesive fracture mode. This fracture mode indicated strong links at the adhesive/substrate interface, and interaction between CNTs and the matrix was achieved; therefore, adhesion performance of the composite epoxy/sol–gel material to the substrate was improved. An increase of a strong peak related to the C–O bond at ~1733 cm-1 in the FTIR spectra was observed. This peak represented crosslinking between the CNT surface and the organosilica
nanoparticles in the MWCNTs-doped composite adhesive. Raman spectroscopy was also used to identify MWCNTs within the adhesive material. The Raman spectra exhibit peaks at ~1275 cm-1 and in the range of ~1549–1590 cm-1. The former is the graphite G-band, while the latter is the diamond D-band. The D-band and G-band represent the C–C single bond and C=C double bond in carbon nanotubes, respectively
Influence of Pachymetry and Intraocular Pressure on Dynamic Corneal Response Parameters in Healthy Patients
To evaluate the influence of pachymetry, age, and intraocular pressure in normal patients and to provide normative values for all dynamic corneal response parameters (DCRs) provided by dynamic Scheimpflug analysis
Quasi-One-Dimensional Topological-Excitation Liquid in Bi2212 from Tunneling Spectroscopy
Tunneling measurements have been carried out on heavily underdoped, slightly
overdoped and partially Ni-substituted Bi2212 single crystals by using a
break-junction technique. We find that in-plane tunneling spectra below Tc are
the combination of incoherent part from the pseudogap and coherent
quasiparticle peaks. There is a clear correlation between the magnitude of the
pseudogap and the magnitude of the superconducting gap in Bi2212. The analysis
of the data suggests that the tunneling pseudogap in Bi2212 is predominantly a
charge-density-wave gap on dynamical charge stripes. The tunneling
characteristics corresponding to the quasiparticle peaks are in excellent
agreement with theoretical predictions made for a quasi-one dimensional
topological-excitation liquid. In addition, the analysis of data measured by
different techniques shows that the phase coherence along the c-axis is
established at Tc due to spin fluctuations in local antiferromagnetic domains
of CuO2 planes.Comment: Supercond. Sci. Technol. (16 pages
- …