Interfacial friction plays a crucial role in the mechanical properties of
carbon nanotube based fibers, composites, and devices. Here we use molecular
dynamics simulation to investigate the pressure effect on the friction within
carbon nanotube bundles. It reveals that the intertube frictional force can be
increased by a factor of 1.5 ~ 4, depending on tube chirality and radius, when
all tubes collapse above a critical pressure and when the bundle remains
collapsed with unloading down to atmospheric pressure. Furthermore, the overall
cross-sectional area also decreases significantly for the collapsed structure,
making the bundle stronger. Our study suggests a new and efficient way to
reinforce nanotube fibers, possibly stronger than carbon fibers, for usage at
ambient conditions.Comment: revtex, 5 pages, accepted by ACS Nano 10 Dec 200