99 research outputs found
Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction: a case study
BACKGROUND: Several high throughput technologies have been employed to identify differentially regulated genes that may be molecular targets for drug discovery. Here we compared the sets of differentially regulated genes discovered using two experimental approaches: a subtracted suppressive hybridization (SSH) cDNA library methodology and Affymetrix GeneChip(® )technology. In this "case study" we explored the transcriptional pattern changes during the in vitro differentiation of human monocytes to myeloid dendritic cells (DC), and evaluated the potential for novel gene discovery using the SSH methodology. RESULTS: The same RNA samples isolated from peripheral blood monocyte precursors and immature DC (iDC) were used for GeneChip microarray probing and SSH cDNA library construction. 10,000 clones from each of the two-way SSH libraries (iDC-monocytes and monocytes-iDC) were picked for sequencing. About 2000 transcripts were identified for each library from 8000 successful sequences. Only 70% to 75% of these transcripts were represented on the U95 series GeneChip microarrays, implying that 25% to 30% of these transcripts might not have been identified in a study based only on GeneChip microarrays. In addition, about 10% of these transcripts appeared to be "novel", although these have not yet been closely examined. Among the transcripts that are also represented on the chips, about a third were concordantly discovered as differentially regulated between iDC and monocytes by GeneChip microarray transcript profiling. The remaining two thirds were either not inferred as differentially regulated from GeneChip microarray data, or were called differentially regulated but in the opposite direction. This underscores the importance both of generating reciprocal pairs of SSH libraries, and of real-time RT-PCR confirmation of the results. CONCLUSIONS: This study suggests that SSH could be used as an alternative and complementary transcript profiling tool to GeneChip microarrays, especially in identifying novel genes and transcripts of low abundance
Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects
We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation
in phase space. We demonstrate that it accommodates the phase space
dynamics of low dimensional dissipative systems such as the much studied Lorenz
and R\"{o}ssler Strange attractors, as well as the more recent constructions of
Chen and Leipnik-Newton. The rotational, volume preserving part of the flow
preserves in time a family of two intersecting surfaces, the so called {\em
Nambu Hamiltonians}. They foliate the entire phase space and are, in turn,
deformed in time by Dissipation which represents their irrotational part of the
flow. It is given by the gradient of a scalar function and is responsible for
the emergence of the Strange Attractors.
Based on our recent work on Quantum Nambu Mechanics, we provide an explicit
quantization of the Lorenz attractor through the introduction of
Non-commutative phase space coordinates as Hermitian matrices in
. They satisfy the commutation relations induced by one of the two
Nambu Hamiltonians, the second one generating a unique time evolution.
Dissipation is incorporated quantum mechanically in a self-consistent way
having the correct classical limit without the introduction of external degrees
of freedom. Due to its volume phase space contraction it violates the quantum
commutation relations. We demonstrate that the Heisenberg-Nambu evolution
equations for the Quantum Lorenz system give rise to an attracting ellipsoid in
the dimensional phase space.Comment: 35 pages, 4 figures, LaTe
A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment
This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain
A review of the positive and negative effects of cardiovascular drugs on sexual function: a proposed table for use in clinical practice
Several antihypertensive drugs, such as diuretics and β-blockers, can negatively affect sexual function, leading to diminished quality of life and often to noncompliance with the therapy. Other drug classes, however, such as angiotensin II receptor blockers (ARBs) are able to improve patients’ sexual function. Sufficient knowledge about the effects of these widely used antihypertensive drugs will make it possible for cardiologists and general practitioners to spare and even improve patients’ sexual health by switching to different classes of cardiac medication. Nevertheless, previous data (part I) indicate that most cardiologists lack knowledge about the effects cardiovascular agents can have on sexual function and will thus not be able to provide the necessary holistic patient care with regard to prescribing these drugs. To be able to improve healthcare on this point, we aimed to provide a practical overview, for use by cardiologists as well as other healthcare professionals, dealing with sexual dysfunction in their clinical practices. Therefore, a systematic review of the literature was performed. The eight most widely used classes of antihypertensive drugs have been categorised in a clear table, marking whether they have a positive, negative or no effect on sexual function
A simple rule to determine which insolation cycles lead to interglacials
The pacing of glacial–interglacial cycles during the Quaternary period (the past 2.6 million years) is attributed to astronomically driven changes in high-latitude insolation. However, it has not been clear how astronomical forcing translates into the observed sequence of interglacials. Here we show that before one million years ago interglacials occurred when the energy related to summer insolation exceeded a simple threshold, about every 41,000 years. Over the past one million years, fewer of these insolation peaks resulted in deglaciation (that is, more insolation peaks were ‘skipped’), implying that the energy threshold for deglaciation had risen, which led to longer glacials. However, as a glacial lengthens, the energy needed for deglaciation decreases. A statistical model that combines these observations correctly predicts every complete deglaciation of the past million years and shows that the sequence of interglacials that has occurred is one of a small set of possibilities. The model accounts for the dominance of obliquity-paced glacial–interglacial cycles early in the Quaternary and for the change in their frequency about one million years ago. We propose that the appearance of larger ice sheets over the past million years was a consequence of an increase in the deglaciation threshold and in the number of skipped insolation peaks.P.C.T. acknowledges funding from a Leverhulme Trust Research Project Grant (RPG-2014-417). M.C. and T.M. acknowledge support from the Belgian Policy Office under contract BR/121/A2/STOCHCLIM. E.W.W. is funded under a Royal Society Research Professorship and M.C. is a senior research scientist with the Belgian National Fund of Scientific Research
- …