53 research outputs found

    A Tutorial on Radiation Oncology and Optimization

    Get PDF
    Designing radiotherapy treatments is a complicated and important task that affects patient care, and modern delivery systems enable a physician more flexibility than can be considered. Consequently, treatment design is increasingly automated by techniques of optimization, and many of the advances in the design process are accomplished by a collaboration among medical physicists, radiation oncologists, and experts in optimization. This tutorial is meant to aid those with a background in optimization in learning about treatment design. Besides discussing several optimization models, we include a clinical perspective so that readers understand the clinical issues that are often ignored in the optimization literature. Moreover, we discuss many new challenges so that new researchers can quickly begin to work on meaningful problems

    Phantom investigation of 3D motion-dependent volume aliasing during CT simulation for radiation therapy planning

    Get PDF
    PURPOSE: To quantify volumetric and positional aliasing during non-gated fast- and slow-scan acquisition CT in the presence of 3D target motion. METHODS: Single-slice fast, single-slice slow, and multi-slice fast scan helical CTs were acquired of dynamic spherical targets (1 and 3.15 cm in diameter), embedded in an anthropomorphic phantom. 3D target motions typical of clinically observed tumor motion parameters were investigated. Motion excursions included ± 5, ± 10, and ± 15 mm displacements in the S-I direction synchronized with constant displacements of ± 5 and ± 2 mm in the A-P and lateral directions, respectively. For each target, scan technique, and motion excursion, eight different initial motion-to-scan phase relationships were investigated. RESULTS: An anticipated general trend of target volume overestimation was observed. The mean percentage overestimation of the true physical target volume typically increased with target motion amplitude and decreasing target diameter. Slow-scan percentage overestimations were larger, and better approximated the time-averaged motion envelope, as opposed to fast-scans. Motion induced centroid misrepresentation was greater in the S-I direction for fast-scan techniques, and transaxial direction for the slow-scan technique. Overestimation is fairly uniform for slice widths < 5 mm, beyond which there is gross overestimation. CONCLUSION: Non-gated CT imaging of targets describing clinically relevant, 3D motion results in aliased overestimation of the target volume and misrepresentation of centroid location, with little or no correlation between the physical target geometry and the CT-generated target geometry. Slow-scan techniques are a practical method for characterizing time-averaged target position. Fast-scan techniques provide a more reliable, albeit still distorted, target margin

    Standard fractionation intensity modulated radiation therapy (IMRT) of primary and recurrent glioblastoma multiforme

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intensity-modulated radiation therapy (IMRT) affords unparalleled capacity to deliver conformal radiation doses to tumors in the central nervous system. However, to date, there are few reported outcomes from using IMRT, either alone or as a boost technique, for standard fractionation radiotherapy for glioblastoma multiforme (GBM).</p> <p>Methods</p> <p>Forty-two patients were treated with IMRT alone (72%) or as a boost (28%) after 3-dimensional conformal radiation therapy (3D-CRT). Thirty-three patients with primary disease and 9 patients with recurrent tumors were included. Thirty-four patients (81%) had surgery, with gross tumor resection in 13 patients (36%); 22 patients (53%) received chemo-radiotherapy. The median total radiation dose for all patients was 60 Gy with a range from 30.6 to 74 Gy. Standard fractions of 1.8 Gy/day to 2.0 Gy/day were utilized.</p> <p>Results</p> <p>Median survival was 8.7 months, with 37 patients (88%) deceased at last contact. Nonparametric analysis showed no survival difference in IMRT-boost vs. IMRT-only groups.</p> <p>Conclusion</p> <p>While technically feasible, preliminary results suggest delivering standard radiation doses by IMRT did not improve survival outcomes in this series compared to historical controls. In light of this lack of a survival benefit and the costs associated with use of IMRT, future prospective trials are needed to evaluate non-survival endpoints such as quality of life and functional preservation. Short of such evidence, the use of IMRT for treatment of GBM needs to be carefully rationalized.</p

    Dual networking : how collaborators network in their quest for innovation

    Get PDF
    Organizations typically employ a division of labor between specialist creator roles and generalist business roles in a bid to orchestrate innovation. We seek to determine the extent to which individuals dividing the work across roles can also benefit from dividing their network. We argue that collaborating individuals benefit from connecting to the same groups but different individuals within those groups—an approach we label dual networking—rather than from a pure divide-and-conquer approach. To test this argument, we study a dual career-ladder setting in a large multinational in which R&D managers and technologists partner up in their quest for innovation. We find that collaborators who engage in dual networking attain an innovation performance advantage over those who connect to distinct groups. This advantage stems from the opportunity to engage in the dual interpretation of input the partners receive, as well as from dual influencing that helps them to gain momentum for their proposed innovations, and it leads to more effective elaboration and championing of their ideas. In demonstrating these effects, we advance understanding of how collaborators organize their networking activities to best achieve innovative outcomes

    Preferred treatment position between supine and prone for pelvic radiation therapy; quantification of the intrafractional body motion component by 3D surface imaging system

    Get PDF
    Purpose: We investigated the preferred treatment position between supine and prone during pelvic radiation treatment using real time tracking data from AlignRT. Our findings will provide valuable information regarding the role of intrafractional body motion in answering the question of prone versus supine position for pelvis radiation. Methods: Ten patients receiving pelvic radiation were enrolled in this study. For each patient, two simulation helical CT scans were performed, one in supine and one in prone position. Body surface contours were automatically generated and then exported to the AlignRT system as reference images. AlignRT continuous patient body motion tracking (1.5 to 2 minutes) was performed for both positions for each patient once per week for five weeks. The equivalent patient body motion along three principle directions was calculated from the six degree of freedom real time patient displacements data. The maximum and the standard deviation (STD) of equivalent patient body motion were calculated, so as the average of maximum and STD of equivalent patient motion over five fractions. These were then compared between supine and prone orientations. Results: A correlation was observed between the intrafractional body motion and large BMI. For overweight/obese patients, the intrafractional body motion was smaller for the supine position in both vertical and longitudinal directions. For normal range BMI patients, we observed no clear advantage for either supine or prone position in both vertical and longitudinal directions. In lateral direction, the intrafractional motion did not have statistically difference between two positions. Conclusion: Our study shows that the amount of intrafractional body motion between supine and prone orientation is correlated with patient BMI. Overweight/obese patients experienced significantly less overall body motion in supine orientation. The preferred treatment position for normal BMI patients was seen to be individually variable

    IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119.

    Get PDF
    AAPM Task Group 119 has produced quantitative confidence limits as baseline expectation values for IMRT commissioning. A set of test cases was developed to assess the overall accuracy of planning and delivery of IMRT treatments. Each test uses contours of targets and avoidance structures drawn within rectangular phantoms. These tests were planned, delivered, measured, and analyzed by nine facilities using a variety of IMRT planning and delivery systems. Each facility had passed the Radiological Physics Center credentialing tests for IMRT. The agreement between the planned and measured doses was determined using ion chamber dosimetry in high and low dose regions, film dosimetry on coronal planes in the phantom with all fields delivered, and planar dosimetry for each field measured perpendicular to the central axis. The planar dose distributions were assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop confidence limits for the test results using the concept confidence limit = /mean/ + 1.96sigma. Other facilities can use the test protocol and results as a basis for comparison to this group. Locally derived confidence limits that substantially exceed these baseline values may indicate the need for improved IMRT commissioning

    Developing priority variables ("ecosystem Essential Ocean Variables" — eEOVs) for observing dynamics and change in Southern Ocean ecosystems

    Get PDF
    Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator–prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds. We consider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region — the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term. Regional boundary: south of 30°S

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Radiotherapy for Prostate Cancer: is it ‘what you do’ or ‘the way that you do it’? A UK Perspective on Technique and Quality Assurance

    Full text link
    corecore