584 research outputs found

    The Nature of the H2-Emitting Gas in the Crab Nebula

    Get PDF
    Understanding how molecules and dust might have formed within a rapidly expanding young supernova remnant is important because of the obvious application to vigorous supernova activity at very high redshift. In previous papers, we found that the H2 emission is often quite strong, correlates with optical low-ionization emission lines, and has a surprisingly high excitation temperature. Here we study Knot 51, a representative, bright example, for which we have available long slit optical and NIR spectra covering emission lines from ionized, neutral, and molecular gas, as well as HST visible and SOAR Telescope NIR narrow-band images. We present a series of CLOUDY simulations to probe the excitation mechanisms, formation processes and dust content in environments that can produce the observed H2 emission. We do not try for an exact match between model and observations given Knot 51's ambiguous geometry. Rather, we aim to explain how the bright H2 emission lines can be formed from within the volume of Knot 51 that also produces the observed optical emission from ionized and neutral gas. Our models that are powered only by the Crab's synchrotron radiation are ruled out because they cannot reproduce the strong, thermal H2 emission. The simulations that come closest to fitting the observations have the core of Knot 51 almost entirely atomic with the H2 emission coming from just a trace molecular component, and in which there is extra heating. In this unusual environment, H2 forms primarily by associative detachment rather than grain catalysis. In this picture, the 55 H2-emitting cores that we have previously catalogued in the Crab have a total mass of about 0.1 M_sun, which is about 5% of the total mass of the system of filaments. We also explore the effect of varying the dust abundance. We discuss possible future observations that could further elucidate the nature of these H2 knots.Comment: 51 pages, 15 figures, accepted for publication in MNRAS, revised Figure 12 results unchange

    Resolving the molecular gas around the lensed quasar RXJ0911.4+0551

    Full text link
    We report on high angular resolution observations of the CO(7-6) line and millimeter continuum in the host galaxy of the gravitationally lensed (z~2.8) quasar RXJ0911.4+0551 using the Plateau de Bure Interferometer. Our CO observations resolve the molecular disk of the source. Using a lens model based on HST observations we fit source models to the observed visibilities. We estimate a molecular disk radius of 1±\pm0.2 kpc and an inclination of 69±\pm6\deg, the continuum is more compact and is only marginally resolved by our observations. The relatively low molecular gas mass, Mgas=(2.3±0.5)×109Mgas=(2.3\pm 0.5)\times 10^{9} Msolar, and far infrared luminosity, LFIR=(7.2±1.5)×1011LFIR=(7.2\pm 1.5) \times 10^{11} Lsolar, of this quasar could be explained by its relatively low dynamical mass, Mdyn=(3.9±0.9)×109Mdyn=(3.9\pm 0.9)\times 10^9 Msolar. It would be a scaled-down version the QSOs usually found at high-z. The FIR and CO luminosities lie on the correlation found for QSOs from low to high redshifts and the gas-to-dust ratio (45±1745\pm 17) is similar to the one measured in the z=6.4 QSO, SDSS J1148+5251. Differential magnification affects the continuum-to-line luminosity ratio, the line profile and possibly the spectral energy distribution.Comment: Accepted for publication in A&A, revised after language editin

    Fructo-oligosaccharides: production, characterization and purification

    Get PDF
    GLUPOR 12 - 12nd International Meeting of the Portuguese Carbohydrate Chemistry GroupThe consumers interest in healthy and high nutritional food has significantly increased in the recent years. This trend towards the adoption of healthier lifestyles has been the main driver for the great demand of functional ingredients, such as the prebiotics fructo-oligosaccharides (FOS). Industrially, FOS are produced from sucrose through purified enzymes, in two-step bioprocesses, with low theoretical yields (0.50-0.55 gFOS.gSucrose-1) and purities (50-55%). Downstream steps are therefore needed to remove the non-prebiotic sugars and enable the incorporation of these FOS mixtures in diabetic, dietetic and healthy foods. In the last ten years, we have been investigating new strategies to produce FOS with higher contents, purities and differentiated functionalities. We have been exploring Aureobasidium pullulans and Aspergillus ibericus as FOS producers, in one-step fermentation processes, using the whole cells of the microorganisms instead of the isolated enzymes. This strategy proved to be efficient, fast and economic, yielding 0.64 gFOS.gSucrose-1. The FOS mixtures produced were able to stimulate the growth of probiotic strains and were simultaneously resistant to hydrolysis along the gastrointestinal system confirming their health claims as prebiotics. The probiotic strains preferentially metabolized the FOS mixture synthesized by A. ibericus, followed by the one from A. pullulans and lastly the commercial FOS. The purification of FOS is not straightforward due to the physicochemical similarities between the different oligosaccharides and the smaller saccharides. To increase the FOS purity, we have been exploring different strategies including microbial treatments and downstream treatments as activated charcoal and ion-exchange chromatography. As microbial treatments, we studied the use of a Saccharomyces cerevisiae strain, able to metabolize the small saccharides without FOS hydrolyse, in co-culture with the FOS microorganism producer or in a two-step fermentation, in which FOS are firstly synthesized and then purified by the S. cerevisiae. Fermentations in two-steps were found to be more efficient than the co-culture ones and purities of 82% (w/w) in FOS were obtained [1]. To avoid competition by the subtract in the co-culture, we are now evaluating the use of a S. cerevisiae strain with the SUC2 gene for invertase expression repressed. Using this strategy, FOS are being produced with yields of 0.64 gFOS.gSucrose-1 and purities up to 93% (w/w). As downstream treatment we optimized an adsorption/desorption process of sugars using activated charcoal and ethanol as eluent. Mixtures containing 50.6% (w/w) of FOS were purified to 92.9% (w/w) with a FOS recovery of 74.5% (w/w) and some fractions were obtained with purities up to 97% (w/w) [2]. Acknowledgements: Clarisse Nobre acknowledges the Portuguese Foundation for Science and Technology (FCT) for her Post-Doc Grant [ref. SFRH/BPD/87498/2012] and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004) and the project MultiBiorefinery (POCI-01-0145-FEDER-016403) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. References [1] Nobre, C, Castro, CC, Hantson, A-L, Teixeira, JA, Weireld, G, Rodrigues, LR, Strategies for the production of high-content fructo-oligosaccharides through the removal of small saccharides by co-culture or successive fermentation with yeast, Carbohydrate Polymers, 136, 274281, 2016. [2] Nobre, C, Teixeira, JA, Rodrigues, LR, Fructo-oligosaccharides purification from a fermentative broth using an activated charcoal column. New Biotechnology, 29(3), 395401, 2012.Clarisse Nobre acknowledges the Portuguese Foundation for Science and Technology (FCT) for her Post-Doc Grant [ref. SFRH/BPD/87498/2012] and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER027462), the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004) and the project MultiBiorefinery (POCI-01-0145-FEDER016403) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Strategies for Fructo-oligosaccharides production with high-content and purity

    Get PDF
    Book of Abstracts of CEB Annual Meeting 2017[Excerpt] The consumers’ interest in healthy and high nutritional food has significantly increased in the recent years. This trend towards the adoption of healthier lifestyles has been the main driver for the great demand of functional ingredients, such as the prebiotics fructo-oligosaccharides (FOS). Industrially, FOS are produced from sucrose through purified enzymes, in two-step bioprocesses, with low theoretical yields (0.50-0.55 gFOS.gSucrose-1) and purities (50-55%). Downstream steps are therefore needed to remove the non-prebiotic sugars and enable the incorporation of these FOS mixtures in diabetic, dietetic and healthy foods. In the last ten years, we have been investigating new strategies to produce FOS with higher contents, purities and differentiated functionalities. We have been exploring Aureobasidium pullulans and Aspergillus ibericus as FOS producers, in one-step fermentation processes, using the whole cells of the microorganisms instead of the isolated enzymes. This strategy proved to be efficient, fast and economic, yielding 0.64 gFOS.gSucrose-1. The FOS mixtures produced were able to stimulate the growth of probiotic strains and were simultaneously resistant to hydrolysis along the gastrointestinal system confirming their health claims as prebiotics. The probiotic strains preferentially metabolized the FOS mixture synthesized by A. ibericus, followed by the one from A. pullulans and lastly the commercial FOS. [...]info:eu-repo/semantics/publishedVersio

    Structure formation in a colliding flow: The Herschel view of the Draco nebula

    Full text link
    The Draco nebula is a high Galactic latitude interstellar cloud likely to have been formed by the collision of a Galactic halo cloud entering the disk of the Milky Way. Such conditions are ideal to study the formation of cold and dense gas in colliding flows of warm gas. We present Herschel-SPIRE observations that reveal the fragmented structure of the interface between the infalling cloud and the Galactic layer. This front is characterized by a Rayleigh-Taylor instability structure. From the determination of the typical length of the periodic structure (2.2 pc) we estimated the gas kinematic viscosity and the turbulence dissipation scale (0.1 pc) that is compatible with that expected if ambipolar diffusion is the main mechanism of energy dissipation in the WNM. The small-scale structures of the nebula are typical of that seen in some molecular clouds. The gas density has a log-normal distribution with an average value of 10310^3 cm3^{-3}. The size of the structures is 0.1-0.2 pc but this estimate is limited by the resolution of the observations. The mass ranges from 0.2 to 20 M_{\odot} and the distribution of the more massive clumps follows a power law dN/dlog(M)M1.4dN/d\log(M) \sim M^{-1.4}. We identify a mass-size relation with the same exponent as that found in GMCs (ML2.3M\sim L^{2.3}) but only 15% of the mass of the cloud is in gravitationally bound structures. We conclude that the increase of pressure in the collision is strong enough to trigger the WNM-CNM transition caused by the interplay between turbulence and thermal instability as self-gravity is not dominating the dynamics.Comment: 16 pages, A&A, in pres

    Assessment of the potential of tin sulphide thin films prepared by sulphurization of metallic precursors as cell absorbers

    Get PDF
    In this work, SnxSy thin films have been grown on soda-lime glass substrates by sulphurization of metallic precursors in a nitrogen plus sulphur vapour atmosphere. Different sulphurization temperatures were tested, ranging from 300 °C to 520 °C. The resulting phases were structurally investigated by X-Ray Diffraction and Raman spectroscopy. Composition was studied using Energy Dispersive Spectroscopy being then correlated with the sulphurization temperature. Optical measurements were performed to obtain transmittance and reflectance spectra, from which the energy band gaps, were estimated. The values obtained were 1.17 eV for the indirect transition and for the direct transition the values varied from 1.26 eV to 1.57 eV. Electrical characterization using Hot Point Probe showed that all samples were p-type semiconductors. Solar cells were built using the structure: SLG/Mo/SnxSy/CdS/ZnO:Ga and the best result for solar cell efficiency was 0.17%

    Mo bilayer for thin film photovoltaics revisited

    Get PDF
    Thin film solar cells based on Cu(In,Ga)Se2 as an absorber layer use Mo as the back contact. This metal is widely used in research and in industry but despite this, there are only a few published studies on the properties of Mo. Properties such as low resistivity and good adhesion to soda lime glass are hard to obtain at the same time. These properties are dependent on the deposition conditions and are associated with the overall stress state of the film. In this report, a study of the deposition of a Mo bilayer is carried out by analysing first single and then bilayers. The best properties of the bilayer were achieved when the bottom layer was deposited at 10 × 10−3 mbar with a thickness of 500 nm and the top layer deposited at 1 × 10−3 mbar with a thickness of 300 nm. The films deposited under these conditions showed good adhesion and a sheet resistivity lower than 0.8

    Rutura isquémica do músculo papilar ântero-lateral

    Get PDF
    We describe the case of a 59-year-old man who presented with chest pain and ST-segment elevation in the inferior leads, R>S in V1 and ST depression in the anterior leads due to proximal occlusion of the first obtuse marginal. Primary coronary angioplasty and stenting of this artery were performed. Twelve hours later the patient became hemodynamically unstable and severe mitral regurgitation due to rupture of one of the heads of the anterolateral papillary muscle was diagnosed. Emergency surgery was performed (papillary muscle head reimplantation, mitral annuloplasty with a rigid ring, tricuspid annuloplasty and coronary artery bypass grafting). On surgical inspection, it was observed that the detached muscle head had become trapped in the left ventricle by a secondary cord attached to the other head. This case is unusual in presenting two uncommon features of ischemic papillary muscle: rupture of the anterolateral muscle in myocardial infarction involving the inferoposterior walls, and the fact that the ruptured muscle head did not prolapse because it had become trapped in the left ventricle by secondary cord attachment

    Star Formation in the Outer Filaments of NGC 1275

    Full text link
    We present photometry of the outer star clusters in NGC 1275, the brightest galaxy in the Perseus cluster. The observations were taken using the Hubble Space Telescope Advanced Camera for Surveys. We focus on two stellar regions in the south and south-east, far from the nucleus of the low velocity system (~22 kpc). These regions of extended star formation trace the H alpha filaments, drawn out by rising radio bubbles. In both regions bimodal distributions of colour (B-R)_0 against magnitude are apparent, suggesting two populations of star clusters with different ages; most of the H alpha filaments show no detectable star formation. The younger, bluer population is found to be concentrated along the filaments while the older population is dispersed evenly about the galaxy. We construct colour-magnitude diagrams and derive ages of at most 10^8 years for the younger population, a factor of 10 younger than the young population of star clusters in the inner regions of NGC 1275. We conclude that a formation mechanism or event different to that for the young inner population is needed to explain the outer star clusters and suggest that formation from the filaments, triggered by a buoyant radio bubble either rising above or below these filaments, is the most likely mechanism.Comment: Accepted for publication in MNRAS, 14 pages, 14 figures, 3 table

    The Nature of the H\u3csub\u3e2\u3c/sub\u3e-Emitting Gas in the Crab Nebula

    Get PDF
    Understanding how molecules and dust might have formed within a rapidly expanding young supernova remnant is important because of the obvious application to vigorous supernova activity at very high redshift. In previous papers, we have mapped the Crab nebula (the Crab) in a rotovibrational H2emission line, and then measured the molecular excitation temperature for a few of the brighter H2-emitting knots that we have found to be scattered throughout the Crab\u27s filaments. We found that H2 emission is often quite strong, correlates with optical low-ionization emission lines and has a surprisingly high excitation temperature. Here, we study Knot 51, a representative, bright example. It is a spatially isolated structure for which we have available long-slit optical and near-infrared (NIR) spectra covering emission lines from ionized, neutral and molecular gas, as well asHubble Space Telescope visible and Southern Astrophysical Research telescope NIR narrow-band images. We present a series of CLOUDYsimulations to probe the excitation mechanisms, formation processes and dust content in environments that can produce the observed H2 emission. There is still considerable ambiguity about the geometry of Knot 51, so we do not try for an exact match between model and observations. Rather, we aim to explain how the bright H2 emission lines can be formed from within a cloud of the size of Knot 51 that also produces the observed optical emission from ionized and neutral gas. Our models that are powered only by the Crab\u27s synchrotron radiation are ruled out because they are not able to reproduce the observed strong H2 emission coming from thermally populated levels. The simulations that come closest to fitting the observations (although they still have conspicuous discrepancies) have the core of Knot 51 almost entirely atomic with the H2 emission coming from just a trace molecular component, and in which there is extra heating. In this unusual environment, H2 forms primarily through H− by radiative detachment rather than by grain catalysis. In this picture, the 55 H2-emitting cores that we have previously catalogued in the Crab have a total mass of about 0.1 M⊙, which is about 5 per cent of the total mass of the system of filaments. We also explore the effect of varying the dust abundance. We discuss possible future observations that could further elucidate the nature of these H2 knots
    corecore