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Abstract: 

 

 In this work, SnxSy (TS) thin films have been grown on soda-lime glass substrates by 

sulphurization of metallic precursors in a N2+S2 atmosphere. Different sulphurization temperatures 

were tested, ranging from 300ºC to 520ºC. The resulting phases were structurally investigated by 

XRD and Raman spectroscopy. Composition was studied using EDS being then correlated with the 

sulphurization temperature. Optical measurements were performed to obtain transmittance and 

reflectance spectra, from which the energy band gap, were estimated. The values obtained were 1.16 

eV for the indirect transition and for direct transition the values varied from 1.26 eV to 1.46 eV. 

Electrical characterization using Hot Point Probe determined that all samples were p-type 

semiconductors. Solar cells were built using the structure: SLG/Mo/SnxSy/CdS/ZnO:Ga and the best 

result for solar cell efficiency was 0.17%. 
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1. Introduction 

 

  The replacement of the CuIn1-xGaxSe2 (CIGS) as solar cell absorber by one that overcomes 

some of the difficulties has attracted the attention of several research groups in the last decade. The 

binary tin sulphide compound, SnS, is a promising candidate which gathers two important 

advantages: it is relatively cheap and non toxic when compared with CIGS.  The maximum efficiency 

attained so far for SnS based solar cells is 1.3 % [1] which is a low value if compared with CIGS, 19.9 

% [2]. Due to the increasing number of research group studying this compound it is expectable that 

this efficiency will increase further in the near future. Despite these advantages the SnS seem to be 

difficult to grow from raw materials due to the formation of spurious phase, such as SnS2 and Sn2S3, 

during the sulphurization process. This difficulty is increased, especially for vacuum growth method, 

because SnS has a high vapour pressure which means that losses of material will happen for low 

processing pressures and temperatures. 

 

 Several methods have already been developed for the growth of SnxSy. Conventional thermal 

evaporation and electron beam evaporation were tested by E. Ogah et al [3] and A. Tanusevski et al 

[4], respectively. K.T. Ramakrishna Reddy et al [5] were successful in growing SnS using dc 

magnetron sputtering of elemental Sn and post sulphurization process. Non vacuum methods have 

also been developed, namely chemical bath deposition technique by E Turan et al [6], spray-pyrolysis 

by K.T. Ramakrishna Reddy et al [1] and electro-deposition process by Shuying Cheng et al [7]. 

 



 The aim of this work is to assess the potential of the binary tin sulphide compounds, SnxSy, to 

be used as solar cell absorbers. Here we report the results of the growth and characterization of 

those compounds obtained by sulphurization of dc-magnetron sputtered elemental Sn precursor. 

Compositional and structural analyses were performed to identify and characterize the compounds 

that are grown. The influence of the maximum sulphurization temperature on the crystallization 

process is also investigated. The optical properties relevant for this study are the absorption 

coefficient (not shown) and band gap energy. The semiconductor conductivity type of the samples 

was analysed by Hot Point Probe. Solar cells were prepared with the structure 

SLG/Mo/SnxSy/CdS/ZnO:Ga and characterized through I-V measurements. 

 

2. Experimental Details 

 

2.1. Sample Preparation 

 

 The method used in this work to grow the absorber layer can be divided in two stages [8]. 

First, an elemental Sn precursor layer is deposited by dc magnetron sputtering. The second stage is 

the formation of the SnxSy layer by sulphurization of the precursor in a programmable tubular furnace. 

 

 The 3x3 cm2 soda lime glass (SLG) substrates are cleaned in successive ultrasound baths of 

acetone/alcohol/deionised water and later dried with a N2 flow. Next, the deposition of Mo back 

contact was performed by dc magnetron sputtering from a Mo target with purity 3 N. In order to be 

able to perform transmission characterization, a mask was used to avoid the deposition of the Mo 

back contact in half the samples. Then, the metallic Sn precursor was deposited using dc magnetron 

sputtering. All depositions were done under an Ar atmosphere, at an operating pressure of 210-3 

mbar and power densities of 0.11 Wcm-2. The purity of the Sn target was 4 N. Initial thickness 



estimation was done based on the element molecular weight and bulk density. In situ monitoring was 

performed with a quartz crystal monitor. 

 

 The CZTS formation was performed in a tubular furnace in a N2 + S2 vapour atmosphere at a 

constant working pressure of 5.0 mbar and a N2 flow rate of 40 ml/min. Sulphur pellets with purity 5 

N, were evaporated at 130 ºC in a temperature-controlled quartz tube source. The furnace 

temperature was ramped up at 10 ºC/min to the maximum temperature. Different maximum 

sulphurization temperature were tested, 300 ºC, 340 ºC, 430 ºC and 520 ºC. These temperatures 

were kept constant for 10 min and then the system was cooled down naturally. 

 

 For the solar cell preparation a CdS layer 50 nm thick was deposited on top of the SnxSy 

absorber by a chemical bath method. Finally a ZnO:Ga window layer 200 nm thick was deposited by 

RF sputtering. 

 

2.2. Characterization 

 

 During the metallic precursor deposition in situ thickness measurement was done using a quartz 

crystal monitor. A Dektak 150 step profiler was used to measure the thickness of individual metallic 

precursors and the final SnxSy layer thicknesses. X-ray diffraction analysis was performed with a 

PHILIPS PW 3710 system equipped with a Cu-Kα source (wavelength λ = 1.54060 Å) and the 

generator settings were 50 mA, 40 kV. A Hitachi S4100 SEM and a Rontec EDS with setting 

parameters of 25 kV and 10 µA were used for compositional analysis. Raman scattering 

measurements have been performed at room temperature in the backscattering configuration and the 

excitation laser line used was 488 nm. The Jobin-Yvon T64000 Raman spectrometer was equipped 

with an Olympus microscope with a 100 magnification lens. Optical measurements were done using 



a Shimadzu UV3600 spectrophotometer equipped with an integrating sphere. The majority carrier 

type was identified using a hot point probe system. The solar cell parameters have been estimated 

from the I-V curves measured with a home assembled I-V system under simulated standard 

illumination conditions. The sample naming scheme is according to the maximum sulphurization 

temperature. 

 

3. Results and Discussion 

 

 Table 1 shows the results of the compositional analysis and the thicknesses for studied 

samples. This table shows a drop in Sn content of the sample with increasing sulphurization 

temperature from a near stoichiometric SnS at 300 ºC to composition ratios close to 0.6 at 430 ºC. 

This value approaches the stoichiometric SnS2 composition. For higher temperature the results seem 

to stabilize at composition ratios of 0.7. Analyzing the thicknesses, it is clear that for sulphurization 

temperatures of 430 ºC and 520 ºC considerable material losses are observed, which is in 

accordance with the work published by P. A. Fernandes et al [9].  

 

 The figure 1 shows the XRD spectra for the samples sulphurized at 300 ºC, a), and at 340 ºC, 

b). For the lowest tested temperature, according to the International Centre for Diffraction Data 

(ICDD) [10], two compounds are identified: Herzenbergite SnS and SnS2. According to XRD analysis 

presented in figure 2 b), increasing the temperature to 340 ºC, promotes the formation of a new 

compound, Sn2S3. 

 

 The XRD results of the samples sulphurized at 430 ºC and 520 ºC are shown in figure 2 a) and 

b), respectively. The spectrum for S430 shows that the sample is formed by a solid mixture of SnS2 

and Sn2S3. Unexpectedly no SnS phases were detected in this sample. The figure 2 b) shows that for 



520 ºC the sample is formed by SnS and SnS2 phases. Comparing the XRD spectra of sample S300 

and S520 it can be observed an improvement in the cristallinity of the compounds. In sample S520, 

the peaks seem to be sharper than for S300. In S300 the SnS phase appears to dominate over SnS2 

while in S520 the opposite occurs. 

 

 Figure 3 shows the Raman scattering spectra of the samples sulphurized at 300ºC a), 340 ºC 

b), 430 ºC c) and 520 ºC d). All these results confirmed the presence of SnS2 with a peak at 316 cm-1 

[11]. Raman analysis detected SnS phases for samples S300, S340 and S520 with vibration modes 

located at 162 cm-1, 193 cm-1 and 223 cm-1 [11]. The spectrum of sample S430, figure 3 c), show 

peaks at 237 cm-1 and 254 cm-1 which are assigned to Sn2S3 [11]. Note that this compound also has 

a strong peak at 307 cm-1 [11], but for this sample it must be hidden by the SnS2 peak at 316 cm-1. 

 

 In figure 4 it is presented the results of the energy band gap estimation. These graphs show 

the values for direct allowed and indirect allowed transitions. It can be seen that for indirect 

transitions the value was independent of the sulphurization temperature and in the range to 1.16 eV - 

1.17 eV for all the samples. The estimation for direct transitions presents a decreasing value from 

1.45 eV, for the lowest tested sulphurization temperature, 300 ºC, to 1.26 eV, for temperatures of 520 

ºC. This behaviour is due to the improvement in the cristallinity of the phases. Note that these values 

for both indirect and direct transitions refer to SnS phases, [4, 7]. No influence of SnS2 phases were 

detected, which present an energy band gap above 2.0 eV [13]. This result is due to the fact that in a 

solid mixture the optical behaviour of the material is ruled by the one with lower band gap energy. As 

a consequence, for the samples S340 and S430, a lower band gap value was expectable because of 

the presence of Sn2S3 phases which have band gap close to 1.0 eV [13]. Despite that no traces of 

Sn2S3 phases were found in this analysis. 



 Hot point probe analysis was performed for majority carrier identification and all the samples 

showed a p-type semiconductor nature. 

 

 In figure 5 the I-V characteristic of the best solar cell, sample S340, is presented. The cell 

performance parameters measured under simulated AM1.5 illumination were: open circuit voltage, 

Voc, 183 mV, short circuit current density, jsc, 2.7 mA/cm2, fill factor, FF, 34 % and conversion 

efficiency, , of 0.17 %,. The active area of the cell was 0.16 cm2. The other samples showed a 

much weaker photovoltaic effect. 

 

4. Conclusions 

 

This work describes a method to grow SnxSy compounds, using the sulphurization of an 

elemental Sn precursor, to be used as solar cell absorber. For all the growth conditions tested solid 

mixtures of SnS, SnS2 and Sn2S3 were obtained. Despite that, optical and electrical measurements 

showed that the influence of SnS2 and Sn2S3 phases is small compared with the SnS phase. The 

band gap and majority carrier type is defined mostly by the latter phase. Adjustments in the growth 

conditions must be performed, namely in the sulphurization pressure and maximum temperature, in 

order to have a better control of the final composition of the films. 

 

Preliminary solar cell work showed that the best results were obtained for the SnxSy films 

sulphurized at 340 ºC. The best cell efficiency was 0.17 %. Generally the cell parameters are low 

probably due to high recombination promoted by the presence of several phases and large density of 

grain boundaries. Furthermore in the preparation of the cells’ window layer no i-ZnO was deposited 

which may have contributed to the observed low Voc. 
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6. List of table captions 

 

Table 1: Composition ratios for the various samples. The thickness of the metallic precursor layers 

and the sulphurized samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. List of figure captions 

 

Figure 1: XRD spectra of the sample a) S300 and b) S340. Peak assignment is made using data 

reported in reference [10]. 

 

Figure 2: XRD spectra of the sample a) S430 and b) S520. Peak assignment is made using data 

reported in reference [10]. 

 

Figure 3: Raman scattering spectra of the absorber layer: a) sample S300; b) sample S340; c) 

sample S430 and d) sample S520. 

 

Figure 4: Band gap energy estimation of the SnxSy samples S300, S340, S430 and S520. 

 

Figure 5: I - V characteristics of the best solar cell, sample S340. 



 

Sample  Sn thick. (nm) SnxSy thick.(nm) 

S300 0.98 1050 1580 

S340 0.78 925 1580 

S430 0.63 830 1280 

S520 0.71 1400 750 

Table 1 
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