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Abstract: 

 

 Thin film solar cells based in Cu(In,Ga)Se2 as absorber layer use as back contact Mo. This 

metal is widely used in research and in industry but despite this, there is only a small number of 

published studies on the Mo properties. Properties such as low resistivity and good adhesion to 

soda lime glass (SLG) are hard to obtain at the same time. These properties are dependent on the 

deposition conditions and are associated with the overall stress state of the film. In this report, a 

study of the deposition of a Mo bi-layer is done by analysing firstly single and then bi-layers. The 

best bi-layer’s properties was achieved when the bottom layer was deposited at 10x10-3 mbar with a 

thickness of 500 nm and the top layer deposited at 1x10-3 mbar with a thickness of 300 nm. Films 

deposited under these conditions showed good adhesion and a sheet resistivity lower than 0.8 Ω□. 
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 Thin film photovoltaics (PV) is an emerging worldwide industry. Due to the recent raise in 

energy prices and with more ecologic global concerns, PV has increasingly become a more 

important technology. 

 From all the current PV technologies, the one that is showing more industrial interest is the 

Cu(In,Ga)Se2 (CIGS) based photovoltaics. Several authors [1,2] believe that in the next decade, 

solar modules made from CIGS will overtake the giga Watt per year production. This type of 

technology is usually known as thin film PV, because, when compared with Si, the absorber layer 

is much thinner. 

 CIGS thin film solar cells are based on a layered structure represented in figure 1. Each one 

of the layers has a different role in working cells. The work presented in this report refers to the 

back contact layer. This layer has one main purpose which is basically to make the positive 

electrical contact of the cell. Although that is the main purpose, there are a few other requirements 

for this layer that need to be fulfilled, these are: have low resistivity; have good adhesion to soda 

lime glass (SLG); have low roughness; be chemically inert with the materials deposited on top, 

mainly Cu, In and Ga and Se; be stable during the high growth temperatures of the CIGS; allow Na 

diffusion from SLG since the properties of the CIGS films are influenced by the Na doping that 

occurs during growth, this has a positive effect in the solar cells performance [3]; have a high 

reflectance in the visible spectrum; have a temperature expansion coefficient similar to SLG and 

CIGS and form an ohmic contact with CIGS. 

 
Figure 1. Layer sequence of a CIGS solar cell device, SLG stands for soda lime glass and TCO for 

transparent conductive oxide. The figure is not at scale. 

 

One material that suits almost all those requirements is molybdenum (Mo). Mo is used by a 

large number of research groups and by the CIGS industry already in the market as it is shown in 

table 1. As comparison, it is also shown the CIGS growth method and the substrate. Despite 

 
 



 
 

different methods and substrates used in all these companies, Mo as back contact is common to all 

of them. Mo is a metal which can be deposited as thin films with a good resistivity, a good 

adhesion and fairly smooth. It does not react with Cu, Ga or In and although it reacts with Se 

forming a MoSe2 [4] layer there are small positive consequences for the solar cell performances 

reported [5]. Mo is also able to allow diffusion of Na [3] during CIGS growth, and it withstands its 

growth conditions. 

 

Table 1:  Substrates, CIGS growth methods and back contact material for several CIGS companies 
[6]. 

Company Substrate Back 
Contact  Growth CIGS Process 

Shell Solar Glass Mo Sputter/Selenization 
Global Solar Steel Mo Coevaporation 

Miasole Glass Mo Sputter/Selenization 
Würth Solar Glass Mo Coevaporation 

Avancis Glass Mo Sputter/RTP 
Daystar Tech Glass Mo Sputter 

EPV Glass Mo Sputter/evaporation 
Ascent Solar Polymer Mo Coevaporation 

ISET Glass/Flex Mo Ink/Selenization 
Nanosolar Flexible Mo Nanoink print/ RTP 
Heliovolt Glass Mo FASST 

SoloPower Steel Mo ED/RTP 
 

 One weak point that is usually acknowledged in using Mo, is its low reflectance in the 

visible part of the spectrum. Some groups [7] are trying to lower the thickness of the CIGS, their 

motivation is to make PV modules cheaper by using lower quantities of material. With smaller 

thickness in the absorber layer, the amount of light absorbed will decrease and therefore a good 

reflectance of light in the back contact is required. The basic idea is to increase the number of 

absorbed photons by reflecting those that are not absorbed, in the first passage, by the absorber. 

Other metals with low resistivity and reflectivity values, for example Pt, or Au, usually diffuse into 

the CIGS layer during the deposition [8]. Other reports have confirmed that cells made with Mo 

perform better than cells with a back layer with better reflectivity than Mo [8]. 

 Mo is usually deposited by sputtering, mainly because these methods are used in industry 

and are easy to work with. Although Mo appears to be a good material to be used as back contact, 

its deposition is not without problems. When depositing Mo by these methods, the resistivity and 

the adhesion of the films are opposite effects making it difficult to have a film with both properties 

maximized. The reason why this happens is usually attributed to the film stress [9,10] state. Films 

that are deposited under compressive stress have low resistivity but also they have low adhesion. 

On the other hand, films that are deposited under tensile stress have good adhesion but high 

 
 



 
 

resistivity. To overcome this problem Scofield et al [10] suggested depositing a bi-layer. If we can 

have a first layer with good adhesion followed by a layer with good resistivity, it might be possible 

to have a layer in which both properties would be adequate.  

 Despite the fact that the properties of Mo are well known and several groups already use, 

for a long time, a Mo-bilayer, the clear deposition conditions of such a layer have not been reported 

so far. Therefore the objective of this work is not to study all the referred properties but to present 

suitable deposition conditions of a Mo bi-layer. So, from the listed requirements, only the study of 

the properties that can be changed by the deposition method will be done. The properties that are 

required to make suitable Mo films are: thicknesses no bigger than 1000 nm; sheet resistances 

lower than 1 Ω□; good adhesion and being able to support temperatures up to 580 ºC and maintain 

the same properties as before. 

 

 1.1 Influence of the sputtering pressure  

 

 Sputtering working pressure influences the properties of sputtered atoms mainly by two 

ways [11,12]. The first is by changing the deposition rate and the second is the mean free path. 

With more pressure in the chamber the probability of a sputtered atom colliding with an Ar atom 

increases and thus changing the energy of the sputtered atoms. The energy with which the sputtered 

atoms arrive at the substrate is an important factor that determines the stress state of the films. 

 When sputtering at low pressures, Mo films have the tendency to become tightly packed, 

this tends to form films with a compressive stress and there is a decrease in resistivity. On the other 

hand, when sputtering at high pressures Mo films have a more porous columnar grain growth 

causing intergranular voids. This happens due to the reduced energy of sputtered atoms that arrive 

at the substrate. In terms of film properties, these voids make the resistivity higher but since there is 

not a reorganization of the arriving atoms, the adhesion is good. The tensile forces between these 

grains are attractive and inversely proportional in strength to the intergranular spacing [9]. 

Although these two explanations seem to be followed by different groups, there is an effect that is 

not fully explained yet. It is reported that Mo films have a maximum value in tensile stress and 

with increasing deposition pressure the tensile stress lowers and even gets to compressive stress. 

This effect is not explained so far. 

 The stress state of the films is then dependent on the microstructure of the Mo films which 

is also related with the deposition conditions. In ideal situations we would require to have the 

electrical behaviour of the compact films deposited at low pressures with compressive stress and 

the good adhesion that films with columnar grains show when they are in a tensile stress deposited 

 
 



 
 

at high pressures. The stress state of the films studied in this work will be estimated using the 

rocking curve method.  

 

 1.2. The Rocking Curve method 

  

The rocking curve method is a non destructive x-ray based method that allows us to estimate 

the stress state of a thin film. It is a complex technique that explores the strain done by a stress 

produced in the film. Let us consider that εΦ,ψ is the elastic lattice strain in a direction defined by 

the Euler angles ϕ and  ψ with respect to the specimen frame of reference, see Figure 2. 

 
Figure 2. Definition of Euler angles ψ and ϕ with respect to the overall stress state. 

 

The strain depends on the components of the stress tensor  

σij [σij = σji (i≠j); σi3=σ3i=0] [9,13] as: 
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Where ψ is the angle between the normal to the diffracting set of lattice planes [hkl] and the normal 

to the specimen surface, ϕ is the rotation angle within the plane of the layer (see Figure 2). hkld ψφ ,  is 

 
 



 
 

the lattice spacing of [hkl] planes in the direction defined by ϕ and ψ, and 
hkld0 is the corresponding 

strain-free lattice spacing of [hkl] planes. 
hklS1  and 

hklS2 are elastic constants for lattice plane [hkl]. 

For a polycrystalline specimen with random crystallite orientation and a negligible variation of σ ij 

over the depth probed, 
hkl

ψφε , depends linearly on sin2ψ. 

 

 For the case of Mo, the direction used is [321]. The peak is found around the 2θ range 129-

137 º. 

   

 2. Experimental 

 

 2.1. Film Deposition 

 

 Deposition of Mo was done by dc magnetron sputtering. The Mo target purity was N4 and 

it was used Ar N5 as the sputtering gas. Mo films were deposited on 3×3 cm2 soda lime glass 

(SLG), which were cleaned with acetone, alcohol, hot deionised water and dried using a N2 flux. 

The base pressure of the chamber was 5×10-6 mbar. Thicknesses were monitored with a quartz 

crystal monitor Intellemetrics IL 150. The working pressure in the chamber could be changed in the 

interval of 1x10-3 and 1x10-2 mbar. This was done by changing the Ar flow or by opening a 

butterfly valve. In this study we have always used the same flow of Ar to calibrate the butterfly 

position at a predefined pressure. Pressure then could be changed using different Ar flow values. It 

was used a sputtering power density of 0.5W/cm2 and the substrate-to-target distance was 10 cm. 

 

 2.2. Film Characterization 

 

 Several methods have been used to characterize the films. Four Point Probe was used to 

measure the Sheet Resistance of the films; a Dektak 150 step profiler was used to measure film 

thicknesses; reflectivity was measured using a double beam Shimadzu spectrophotometer UV-

3600; films’ adhesion was tested by the Scotch tape test [10] and the rocking curve method was 

used to calculate the stress state of the films, finally XRD analysis were used to see the preferential 

orientation of the Mo films. X-ray diffraction (XRD) was done with a PHILIPS PW 3710 with a 

Cu-Kα line of 1.5406 Å. Scanning electron microscopy (SEM) was used to see the morphology of 

the sample and a Hitachi SU-70 with a acceleration voltage of 7 kV was used. 

 
 



 
 

It was considered that the Scotch tape test or adhesion test had only two results, good or bad. If 

after the application of the tape the film was not damaged, then the adhesion was good, otherwise it 

was considered bad. 

 

 2.2.1. Resistivity  

 

 As stated before, the four point probe method was used to measure the sheet resistance (ρs) 

of the films. Knowing the sheet resistance and the thickness (h) of the films it is possible to 

estimate the resistivity (ρ) using the following equation: 

 

sh ρρ ⋅=       (3) 

 This equation is valid for square uniform samples. 

 

 2.2.2. Rocking Curves 

 

 For these measurements a x-ray diffractometter with a CuKα radiation was used. For 

measuring the profiles of the Mo [321] peak, a scan between 0º and 63º in the ψ direction was 

done. It was used Bragg’s Law to calculate
321
,Ψφd . The curves were fitted using a Voigt function. 

 By using the slope of 
321
,Ψφd (sin2ψ) and equation 1 it is possible to estimate the value 

φσ321
22

1 S . The linearization was done in the interval of 0.25 to 0.7 sin2ψ. 321
2S  takes the value of 

4.76x10-6 MPa-1 [9,10] and therefore it is possible to calculate φσ . Although, it is also possible to 

determine bi-axial components of the stress tensor, since these follow the general behaviour of φσ , 

this component is enough to evaluate the stress state of the films.  

 

 3. Results and Discussions 

 

 3.1. Single layer films 

 

Single layer Mo films were initially deposited to test the different regimes described by 

Scofield et al [11] and analyse the reproducibility of such conditions in our chamber. In table 2 the 

results of the first experiments are shown. For this set of experiments the main purpose was to 

identify the changes in adhesion and resistivity as function of the pressure. 

 
 



 
 

Table 2 shows the same tendency that has been reported by Scofield et al [10] for all 

properties. Films sputtered at high pressure have good adhesion and bad resistivity and films at 

lower pressure have the opposite properties. In figure 2 it is possible to see the resistivity as 

function of the pressure. The results follow the same tendency as shown in previous studies [9, 10].  

 
Table 2. Properties of single layer Mo films. 

 
Pressure  

(mbar) 
Adhesion 

Resistivity 

(μΩ.cm) 

10x10-3 Good 411.0 

6x10-3 Good 330.4 

4x10-3 Bad 82.7 

1x10-3 Bad 36.3 

 

 From these results it is evident that there are two regimes when depositing Mo. The first 

regime, at pressures between 6x10-3 and 10x10-3 mbar, produces samples with good adhesion but 

with a high resistivity. In the second regime, at pressures between 4x10-3 and 1x10-3 mbar, the 

samples have bad adhesion but a lower resistivity as it is shown in Figure 2. 

This analysis demonstrates what regimes we can use to do the bi-layer. The first layer should be 

deposited in a pressure higher than 6x10-3 mbar to obtain good adhesion and the second with a 

pressure smaller then 4x10-3 mbar to obtain a low resistivity. 
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Figure 2: Mo film resistivity versus working pressure. 
 

 
 



 
 

 3.2. Bi-layer films 
 

For this test it was decided to deposit a layer at high pressure at the bottom followed by a layer 

at low pressure at the top. It was decided to make the bottom layer with 500 nm and to study the 

variation of the thickness of the top layer. The pressures chosen were 10x10-3 mbar for to the 

bottom layer and 4x10-3 mbar for to the top layer. Between the two different pressures there is a 

period of 2 minutes. During this time the pressure is lowered in 1 minute and the tooling factor is 

changed in the other minute. Since this is not automatic these transitions are different from film to 

film and can change the final thickness of the film. 

 

Table 3: Description of the bi-layer process with 10x10-3/4x10-3 mbar. 
 

Sample Step 
Pressure 

(mbar) 

Monitor 

Thickness 

(nm) 

Total 

measured 

thickness 

(nm) 

Adhesion 
ρs  

(Ω□) 

ρ 
(μΩ.cm) 

1 
1 10x10-3 500 

685 Good 4.5 307.68 
2 4x10-3 200 

2 
1 10x10-3 500 

808 Good 2.4 194.07 
2 4x10-3 300 

3 
1 10x10-3 500 

911 Bad 1.8 163.98 
2 4x10-3 400 

 

By looking at the properties presented in Table 3, we see that when the top layer is thin, 

then the film properties are close to those of the single layer samples deposited at high pressure. In 

the other extreme case, where the top layer is as thick as the bottom layer, the film has bad 

adhesion and the lowest resistivity. The best sample of this run was the one in which the bottom 

layer had 500 nm and the top layer had 300 nm. For the top layer of 400 nm there was poor 

adhesion and so continuing to increase the thickness of the top layer was useless. The value of 1.8 

Ω□ for the sheet resistance is not low enough and therefore the deposition pressure of the top layer 

was further decreased. 

 In Table 4 the properties of the Mo films with a top layer deposited at 1x10-3 mbar are 

presented. Four different second layers were used, 50 nm, 200 nm, 300 nm and 450 nm. This time 

with increasing thickness of the top layer no noticeable degradation in the adhesion was observed. 

In the case in which the top layer had 450 nm it was noticed a degradation in the value of the 

resistivity as shown in Figure 3. This was supposedly due to a worse adhesion but the test was not 

able to confirm it. 

 
 



 
 

 

Table 4: Parameters and results of the bi-layer deposition with 10x10-3/1x10-3 mbar 

pressures. 

Sample Step 
Pressure 

(mbar) 

Controller 

Thickness 

(nm) 

Adhesion 

Total 

measurement 

thickness 

(nm) 

ρs  

(Ω□) 

ρ 

(μΩ.cm) 

1 
1 10x10-3 500 

Good 567 1.6 90.7 
2 1x10-3 50 

2 
1 10x10-3 500 

Good 717 0.8 57.4 
2 1x10-3 200 

3 
1 10x10-3 500 

Good 817 0.6 49.1 
2 1x10-3 300 

4 
1 10x10-3 500 

Good 972 0.8 77.8 
2 1x10-3 450 

 

500 550 600 650 700 750 800 850 900 950 1000 1050
45

50

55

60

65

70

75

80

85

90

95

Thickness  (nm)

Re
sis

tiv
ity

 (µ
Ω

.c
m

)

 

 

 
Figure 3: Resistivity versus thickness for samples deposited at with a bottom layer of 500 nm 

deposited at 10x10-3 mbar and different top layers deposited at 1x10- 3 mbar.  

 

 
 



 
 

 Sample number 3 presented the lowest resistivity and had a good adhesion. This sample 

showed a sheet resistance of 0.6 Ω□ with a total thickness of 817 nm which corresponds to a 

resistivity of 49.1 μΩ.cm. This value of resistivity is very close to that of a Mo single layer 

deposited at 1x10-3 mbar.  There are some differences between the monitored thicknesses and the 

ones measured with the profiler but these differences are small and acceptable. 

 Since it was shown for these pressure ranges that the lowest achievable resistivity was 49.1 

μΩcm for the sample with thickness 500+300 nm at 10x10-3 /1x10-3 mbar, it was decided to study 

further samples deposited in these conditions. 

 

 4. Characterization of the bi-layer films 

 

An important question that has arisen from the last test was the reproducibility. Since there was 

a difference between the crystal monitor values and the measured thickness values it was important 

to check if this error was systematic or random. To investigate this problem, several samples were 

deposited. This was done for more than 4 runs, each with 4 films. It was then noticed that all the 

films had good adhesion. Their thicknesses were between 800-900 nm and the sheet resistance 

values were between 0.5 and 0.8 Ω□. These differences were most likely due to the pressure 

transition time between the bottom and top layers. This transition was done manually and therefore 

variations may exist from sample to sample. 

 To ensure that the film could resist the temperature of growth of CIGS, one of the samples 

was placed in the deposition chamber and heated up to 580 ºC for one hour. The Mo film was able 

to sustain these high temperatures. 

 The XRD spectrum presented in Figure 4 shows the typical cubic Mo structure with the 

following visible peaks: (110) direction with a peak at 40.46 º and d110 = 2.22 Å and a small peak at 

73.75 º which corresponds to the (221) direction with d221 = 1.28 Å. The peaks of the (220) 

reflection at 87 º and (310) at 101 º are very weak. Using Scherrer’s formula for the (110) direction, 

it was estimated that the crystallite size is about 40 nm. This is bigger then the grain size of 10 nm 

reported by Vink [9]. The lattice parameter, a, was estimated to be 3.13 Å against the 3.10 Å 

predicted by the XRD database [14]. This variation is smaller then 1% and it is probably due to 

measurement errors. 
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Figure 4. XRD spectrum of a Mo bi-layer film. 

 
 

 The stress calculations were made for a bi-layer film. In figure 5 a) it is presented the Voigt 

fit for a XRD measurement with ψ=35,84º. In Figure 5 b) it is plotted 
321
,Ψφd  versus the sin2ψ. 

Calculations of the stress tensor, φσ , were made as previously explained. 
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Figure 5: a) Example of Voigt fitting for ψ=35,84; b) 321
,Ψφd  versus sin2ψ for a bi-layer Mo film. 

 

 As shown in Figure 5 b), not only the correlation between the points is low, but the slope of 

the curve is also low. Although the correlation is weak (R2 of 0.7), it is evident that there is a 

general tendency for higher values of 321
,Ψφd  with the increase of sin2ψ.This means that the film is in 

 
 



 
 

a tensile state. The result of the stress tensor component, φσ ,  is 17 MPa, which is a low value. For 

comparison purposes, the values found by Vink et al [9] were in the order of GPa. This difference 

is possibly due to the fact that the film is too thick, but it is also possible that this is a mean value 

for a film with the top half in a compressive state and the bottom half in a tensile state. 

Nevertheless the important film properties had the desirable values. 

In figure 6, a SEM image of the cross section of a Mo bi-layer is presented. The film shows a 

columnar growth and it is possible to see the bottom layer with 500nm and the top layer with 300 

nm. 

 

 
Figure 6:  SEM image of the cross section of a Mo-bilayer. 

 

 5. Conclusions and Outlook 

 

 The main goal of this work was to clearly identify the deposition conditions, lacking in the 

literature, that ensured the deposition of Mo bi-layers with good adhesion to the SLG, a sheet 

resistivity lower than 1 Ω□ and good reproducibility of the former two properties. In this paper we 

presented the results of a study for varying pressure and thickness of the top layer. A detailed study 

of the resulting bi-layers was made, and the optimal result was achieved when the bottom layer was 

deposited at 10x10-3 mbar with a thickness of 500 nm and the top layer deposited at 1x10-3 mbar 

with a thickness of 300 nm. The bi-layers produced by this method meet the desired properties by 

having a good adhesion and a sheet resistivity between 0.5 and 0.8 Ω□. 

 The resulting bi-layers were analysed and XRD studies showed a film with the typical Mo 

cubic structure and a crystallite size of 40 nm. Stress calculations showed that these films were in a 

low tensile state. These calculations were difficult to make due to the big dispersion of the data 

when analysing the rocking curves itself. The method proved to be reproducible and the films could 

withstand the harsh growth conditions of CIGS. 
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