62 research outputs found

    Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma

    Get PDF
    SummaryWe report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies

    Integrated genomic characterization of pancreatic ductal adenocarcinoma

    Get PDF
    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    MT 3-methoxytyramine 5-HIAA 5-hydroxyindoleacetic acid L-5-HTP L-5-hydroxytryptophan @ maximum binding. 5-HT2ReceptorBlockadeby ICI 169,369 andother5-HT2 Antagonists Modulates the Effectsof D-2 Dopamine Receptor Blockade1

    No full text
    ABSTRACT The effects of D-2 dopamine (DA) receptor blockade were mod ulated by ICI 169,369, a selective 5-hydroxytryptamine (5-HTh receptor antagonist, and by other 5-HT2 antagonists. Specifically, it appears that blockade of 5-HT2 receptors can attenuate the effects of D-2 receptor blockade on rat stnatal dopaminergic transmission. Thus, the blockade of D-2 receptors by halopendol results in a compensatory increase in rat stnatal DA metabolism, which is enhanced by lCl 169,369. By itself, ICI 169,369 did not significantly alter DA metabolism. Conversely, several corn pounds which possess appreciable activity at 5-HT2 sites in ex vivo binding assays, but possess little activity at D-2 sites (i.e., pirenperone, setoperone, fluperlapine and clozapine), all pro duced large increases in striatal DA metabolism. Therefore, these data suggest that the 5-HT2 component of these compounds, by enhancing DA metabolism, may act to attenuate the blockade of stnatal 0-2 receptors by these compounds. Consistent with this hypothesis, the chronic blockade of D-2 receptors by halo peridol increases the number of striatal D-2 DA receptors, and these increases are attenuated by the coadministration of ICI 169,369.Likewise, pirenperone andclozapine, at doseswhich acutely produced elevations in DA metabolism which were similar to those produced by halopendol, failed to increase the number of D-2 receptors in striatum. Interestingly, 5-HT2receptor block ade did not appear to potently modulate the effects of D-2 receptor blockade in the olfactory tubercie, a brain region which is innervated by mesolimbic DA-containing neurons. The atten uation of the effects of D-2 receptor blockade by 5-HT2receptor blockade may also occur with regard to the ability of D-2 block ade to elevate plasma prolactin concentrations. Thus, haloperidol produces a large increase in plasma prolactin concentrations which is attenuated by ICI 169,369. By itself, ICI 169,369 did not elevate plasma prolactin concentrations. The above data are discussed with regard to the possibility that the blockade of 5-HT2receptors may ameliorate some of the unwanted side effects of antipsychotic therapy and may at least partially account for the pharmacological profile of drugs such as clozapine, which have little or no propensity to produce such side effects. Recently, several compounds (i.e., IC! 169,369, ketanserin, ritanserin, setoperone and pirenperone) have been developed that potently block 5-HT2 receptors I16

    Behavioral effects of amphetamine in streptozotocin-treated rats

    No full text
    Experimentally-induced diabetes can modify the behavioral and neurochemical effects of drugs acting on dopamine systems, possibly through insulin-related regulation of dopamine transporter activity. In this study, several behavioral procedures were used to examine possible changes in sensitivity to amphetamine and other drugs in rats rendered diabetic by a single injection of streptozotocin. Conditioned place preference developed to food (Froot Loops) in both control and diabetic rats, demonstrating that conditioned place preference with tactile stimuli can occur in streptozotocin-treated rats. Baseline locomotion was lower in streptozotocin-treated as compared to control rats, although amphetamine significantly increased locomotion in all rats. Conditioned place preference developed to amphetamine regardless of whether rats had received streptozotocin or saline. A second study compared the potency of drugs to decrease lever pressing maintained by food, before and after streptozotocin treatment. Gamma-hydroxybutyrate and amphetamine were less potent after streptozotocin while the potency of raclopride, quinpirole, ketamine, haloperidol and cocaine was not significantly changed by streptozotocin. While markedly affecting locomotion, body weight and blood glucose, streptozotocin only modestly affected sensitivity to the behavioral effects of amphetamine and other drugs; these results fail to confirm previous reports of decreased behavioral actions of stimulants in diabetic rats.Rajkumar J. Sevak, Wouter Koek, Lynette C. Daws, William Anthony Owens, Aurelio Galli and Charles P. Franc

    Alternative mRNA is favored by the A3 haplotype of the EPCR gene PROCR and generates a novel soluble form of EPCR in plasma

    No full text
    The endothelial cell protein C receptor also exists in soluble form in plasma (sEPCR), resulting from ADAM17 cleavage. Elevated sEPCR levels are observed in subjects carrying the A3 haplotype, which is characterized by a Ser219Gly substitution in the transmembrane domain, rendering the receptor more sensitive to cleavage. Because sEPCR production is not completely blocked by metalloprotease inhibition, we looked for another mechanism. Comparing mRNA expression patterns and levels in A3 and non-A3 cells from 32 human umbilical cord veins, we detected a truncated mRNA in addition to the full-length mRNA. This truncated mRNA was 16 times more abundant in A3 human umbilical vein endothelial cells than in non-A3 human umbilical vein endothelial cells and encoded a protein lacking the transmembrane domain. We stably expressed a recombinant form of this protein (rEPCRisoform) and a protein mimicking the plasma sEPCR (rEPCRsol). Functional studies of the purified recombinant proteins revealed that the rEPCRisoform bound to recombinant protein C with similar affinity than rEPCRsol and that it also inhibited the anticoagulant activity of APC. Trace amounts of the EPCR isoform were found in the plasma of A3 subjects. These results suggest that the sEPCRisoform could contribute to the regulatory effect of sEPCR in plasma
    • …
    corecore