489 research outputs found

    Influence of Feeding Enzymatically Hydrolyzed Yeast Cell Wall on Growth Performance and Digestive Function of Feedlot Cattle during Periods of Elevated Ambient Temperature.

    Get PDF
    In experiment 1, eighty crossbred steers (239±15 kg) were used in a 229-d experiment to evaluate the effects of increasing levels of enzymatically hydrolyzed yeast (EHY) cell wall in diets on growth performance feedlot cattle during periods of elevated ambient temperature. Treatments consisted of steam-flaked corn-based diets supplemented to provide 0, 1, 2, or 3 g EHY/hd/d. There were no effects on growth performance during the initial 139-d period. However, from d 139 to harvest, when 24-h temperature humidity index averaged 80, EHY increased dry matter intake (DMI) (linear effect, p<0.01) and average daily gain (ADG) (linear effect, p = 0.01). There were no treatment effects (p>0.10) on carcass characteristics. In experiment 2, four Holstein steers (292±5 kg) with cannulas in the rumen and proximal duodenum were used in a 4×4 Latin Square design experiment to evaluate treatments effects on characteristics of ruminal and total tract digestion in steers. There were no treatment effects (p>0.10) on ruminal pH, total volatile fatty acid, molar proportions of acetate, butyrate, or estimated methane production. Supplemental EHY decreased ruminal molar proportion of acetate (p = 0.08), increased molar proportion of propionate (p = 0.09), and decreased acetate:propionate molar ratio (p = 0.07) and estimated ruminal methane production (p = 0.09). It is concluded that supplemental EHY may enhance DMI and ADG of feedlot steers during periods of high ambient temperature. Supplemental EHY may also enhance ruminal fiber digestion and decrease ruminal acetate:propionate molar ratios in feedlot steers fed steam-flaked corn-based finishing diets

    Expressions of glutathione S-transferase alpha, mu, and pi in brains of medically intractable epileptic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glutathione S-transferases (GSTs) play an important role in metabolizing anti-epileptic drugs (AEDs) in liver. Expressions of GSTs in brain, which may result in poor efficacy of AEDs, have not been well studied. Using clinical cortex specimen from 32 intractable epileptic subjects and 8 non-epileptic controls, the present study investigated the correlation between GSTs and intractable epilepsy.</p> <p>Results</p> <p>Three different GST isoforms (α, μ, and π) were detected with immunohistochemistry. GST-α expression was not seen in any cortex specimens. Sixty three percent (63%) of control and 53% of intractible epileptic specimens showed GST-μ immunoreactivity. No significant difference in intensity of GST-μ staining was observed between these two groups. GST-π expression was found in endothelial cells and glial cells/astrocytes. Fifty percent (50%) of the control patients and 66% of the epileptic patients were GST-π positive. The grading of epileptic patients was significantly higher than that of control patients (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>High levels of GST-π in endothelial cells and glial cells/astrocyte correlate to medical intractable epilepsy, suggesting that GST-π contributes to resistance to AED treatment.</p

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions.

    Get PDF
    We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies

    Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva

    Get PDF
    BackgroundCorticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood.MethodsWe investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, maternal smoking status, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children's blood cells collected at mid-childhood (n = 239, age: 6.7-10.3 years) additionally adjusting for the children's age at blood drawn.ResultsMaternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate &lt;0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P &lt; 0.05, β = 0.64, SE = 0.30).ConclusionIn our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood

    Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making

    Get PDF
    <div><p>Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making.</p></div

    Comparative efficacy of ultrasound-guided and stimulating popliteal-sciatic perineural catheters for postoperative analgesia

    Get PDF
    Perineural catheter insertion using ultrasound guidance alone is a relatively new approach. Previous studies have shown that ultrasound-guided catheters take less time to place with high placement success rates, but the analgesic efficacy compared with the established stimulating catheter technique remains unknown. We tested the hypothesis that popliteal-sciatic perineural catheter insertion relying exclusively on ultrasound guidance results in superior postoperative analgesia compared with stimulating catheters. Preoperatively, subjects receiving a popliteal-sciatic perineural catheter for foot or ankle surgery were assigned randomly to either ultrasound guidance (bolus via needle with non-stimulating catheter insertion) or electrical stimulation (bolus via catheter). We used 1.5% mepivacaine 40 mL for the primary surgical nerve block and 0.2% ropivacaine (basal 8 mL·hr−1; bolus 4 mL; 30 min lockout) was infused postoperatively. The primary outcome was average surgical pain on postoperative day one. Forty of the 80 subjects enrolled were randomized to each treatment group. One of 40 subjects (2.5%) in the ultrasound group failed catheter placement per protocol vs nine of 40 (22.5%) in the stimulating catheter group (P = 0.014). The difference in procedural duration (mean [95% confidence interval (CI)]) was −6.48 (−9.90 - −3.05) min, with ultrasound requiring 7.0 (4.0-14.1) min vs stimulation requiring 11.0 (5.0-30.0) min (P &lt; 0.001). The average pain scores of subjects who provided data on postoperative day one were somewhat higher for the 33 ultrasound subjects than for the 26 stimulation subjects (5.0 [1.0-7.8] vs 3.0 [0.0-6.5], respectively; P = 0.032), a difference (mean [95%CI]) of 1.37 (0.03-2.71). For popliteal-sciatic perineural catheters, ultrasound guidance takes less time and results in fewer placement failures compared with stimulating catheters. However, analgesia may be mildly improved with successfully placed stimulating catheters. Clinical trial registration number NCT00876681

    Leaf-level photosynthetic capacity in lowland Amazonian and high elevation, Andean tropical moist forests of Peru

    Get PDF
    We examined whether variations in photosynthetic capacity are linked to variations in theenvironment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/west-ern Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax),and the maximum rate of electron transport (Jmax)), leaf mass, nitrogen (N) and phosphorus(P) per unit leaf area (Ma,Naand Pa, respectively), and chlorophyll from 210 species at 18field sites along a 3300-m elevation gradient. Western blots were used to quantify the abun-dance of the CO₂-fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than low-land TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa, the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a smallsubset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosyntheticcapacity of TMFs, with variations in N allocation and Rubisco activation state further influenc-ing photosynthetic rates and N-use efficiency of these critically important forests

    Prevalence of Metabolic Syndrome and Risks of Abnormal Serum Alanine Aminotransferase in Hispanics: A Population-Based Study

    Get PDF
    Study the prevalence of metabolic syndrome (MS) and risk factors for and association with elevated alanine aminotransferase (ALT) as markers of hepatic injury in a large Hispanic health disparity cohort with high rates of obesity.Analysis of data from a prospective cross-sectional population based study. From 2004-7, we randomly recruited 2000 community participants to the Cameron County Hispanic Cohort collecting extensive socioeconomic, clinical and laboratory data. We excluded 153 subjects due to critical missing data. Pearson chi-square tests and Student's t-tests were used for categorical and continuous variable analysis, respectively. Logistic regression analysis was performed to determine the risk factors for elevated ALT.The mean age of the cohort was 45 years and 67% were females. The majority of the cohort was either overweight (32.4%) or obese (50.7%). Almost half (43.7%) had MS and nearly one-third diabetes. Elevated ALT level was more prevalent in males than females. Obesity was a strong risk for abnormal ALT in both genders. Hypertriglyceridemia, hypercholesterolemia and young age were risks for elevated ALT in males only, whereas increased fasting plasma glucose was associated with elevated ALT in females only.We identified high prevalence of MS and markers of liver injury in this large Mexican American cohort with gender differences in prevalence and risk factors, with younger males at greatest risk
    corecore