350 research outputs found
A contemplating review on different synthesis methods of 2D-Molybdenum disulfide (MoS2) nanosheets
The current challenges arising from the rapid development in science and technology attracted researchers to focus on the development of new advanced materials like two-dimensional (2D) nanomaterials, which offer exceptional features that can be used to resolve different industrial problems, which include enhancing energy storage and conversion systems, improving electronic and optoelectronic devices, advancing catalysis and sensing applications, enabling flexible and transparent electronics, advancing healthcare technologies, and addressing environmental concerns such as pollution monitoring and remediation. There are many different layered-structure materials on earth. To get the desired form of these materials, various scientific approaches are applied in laboratories and processing industries. As a result, different methods have been developed for the synthesis of 2D materials. Among various 2D materials, molybdenum disulfide (MoS2) is one of the emerging and promising transition metal dichalcogenides (TMDs) materials that has remarkable electrical, magnetic, optical, and mechanical characteristics. Furthermore, MoS2 nanosheets, when incorporated in different materials, produce promising results, such as better catalytic activities, improved hydrogen production, a super-capacitive feature, and enhanced battery performances, etc. Therefore, in this review, we have focused on significant and practical techniques for synthesizing 2D-MoS2 nanosheets developed by different researchers over the years. We comprehensively discuss their applications, characteristics, as well as provide a brief introduction to the physical and chemical properties of 2D MoS2 nanosheets. Furthermore, we address the current challenges associated with the synthesis of these nanosheets. These discussions highlights that the choice of synthesis method mainly relies on factors such as material type, resources, complexity, environmental impact, scalability, cost, and desired properties of 2D MoS2 nanosheets. Additionally, this literature review also outlines future research directions aimed at overcoming these challenges and advancing synthesis processes to enable the economically feasible scaled-up production of 2D MoS2 nanosheets
Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation
With the increasing integration of wind energy sources into conventional power systems, the demand for reserve power has risen due to associated forecasting errors. Consequently, developing innovative operating strategies for automatic generation control (AGC) has become crucial. These strategies ensure a real-time balance between load and generation while minimizing the reliance on operating reserves from conventional power plant units. Wind farms exhibit a strong interest in participating in AGC operations, especially when AGC is organized into different regulation areas encompassing various generation units. Further, the integration of flexible loads, such as electric vehicles and thermostatically controlled loads, is considered indispensable in modern power systems, which can have the capability to offer ancillary services to the grid through the AGC systems. This study initially presents the fundamental concepts of wind power plants and flexible load units, highlighting their significant contribution to load frequency control (LFC) as an important aspect of AGC. Subsequently, a real-time dynamic dispatch strategy for the AGC model is proposed, integrating reserve power from wind farms and flexible load units. For simulations, a future Pakistan power system model is developed using Dig SILENT Power Factory software (2020 SP3), and the obtained results are presented. The results demonstrate that wind farms and flexible loads can effectively contribute to power-balancing operations. However, given its cost-effectiveness, wind power should be operated at maximum capacity and only be utilized when there is a need to reduce power generation. Additionally, integrating reserves from these sources ensures power system security, reduces dependence on conventional sources, and enhances economic efficiency
Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods
Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews
Surfactant protein D modulates HIV infection of both T-cells and dendritic cells
Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo
Hidden magnetic states emergent under electric field, in a room temperature composite magnetoelectric multiferroic
The ability to control a magnetic phase with an electric field is of great current interest for a variety of low power electronics in which the magnetic state is used either for information storage or logic operations. Over the past several years, there has been a considerable amount of research on pathways to control the direction of magnetization with an electric field. More recently, an alternative pathway involving the change of the magnetic state (ferromagnet to antiferromagnet) has been proposed. In this paper, we demonstrate electric field control of the Anomalous Hall Transport in a metamagnetic FeRh thin film, accompanying an antiferromagnet (AFM) to ferromagnet (FM) phase transition. This approach provides us with a pathway to "hide" or "reveal" a given ferromagnetic region at zero magnetic field. By converting the AFM phase into the FM phase, the stray field, and hence sensitivity to external fields, is decreased or eliminated. Using detailed structural analyses of FeRh films of varying crystalline quality and chemical order, we relate the direct nanoscale origins of this memory effect to site disorder as well as variations of the net magnetic anisotropy of FM nuclei. Our work opens pathways toward a new generation of antiferromagnetic - ferromagnetic interactions for spintronics
Expression of M. tuberculosis-induced suppressor of cytokine signaling (SOCS) 1, SOCS3, FoxP3 and secretion of IL-6 associates with differing clinical severity of tuberculosis
Background
Appropriate immune activation of T cells and macrophages is central for the control of Mycobacterium tuberculosis infections. IFN-γ stimulated responses are lowered in tuberculosis (TB), while expression of Suppressor of Cytokine Signaling (SOCS) molecules – 1 and 3 and CD4+CD25+FoxP3+T regulatory cells is increased. Here we investigated the association of these molecules in regard to clinical severity of TB. Methods
Peripheral blood mononuclear cells (PBMCs) were isolated from patients with pulmonary TB (PTB, n = 33), extra-pulmonary TB (ETB, n = 33) and healthy endemic controls (EC, n = 15). Cases were classified as moderately advanced or far advanced PTB, and less severe or severe disseminated ETB. M. tuberculosis -stimulated IFN-γ, SOCS1, SOCS3 and FoxP3 gene expression and secretion of Th1 and Th2 cytokines was measured. Statistical analysis was performed using Mann–Whitney U, Wilcoxon Rank and Kruskal Wallis non-parametric tests. Results
In un-stimulated PBMCs, IL-6 (p = 0.018) and IL-10 (p = 0.013) secretion levels were increased in PTB while IL-10 was also increased in ETB (p = 0.003), all in comparison with EC. M. tuberculosis-stimulated IL-6 (p = 0.003) was lowered in ETB as compared with EC. SOCS1 mRNA expression in M. tuberculosis stimulated PBMCs levels in moderately advanced PTB (p = 0.022), far advanced (p = 0.014) PTB, and severe ETB (p = 0.009) were raised as compared with EC. On the other hand, SOCS1 mRNA titers were reduced in less severe ETB, in comparison with severe ETB (p = 0.027) and far advanced PTB (p = 0.016). SOCS3 mRNA accumulation was reduced in far advanced PTB (p = 0.007) and FoxP3 mRNA expression was increased in less severe ETB as compared with EC (p = 0.017). Conclusions
The lowered SOCS1 mRNA levels in patients with less severe extra-pulmonary TB as compared to those with more severe ETB and PTB may lead to elevated IFN-γ pathway gene expression in the latter group. As localized ETB has shown to be associated with more effective Th1 immunity and adaptive responses, this suggests a role for SOCS1 in determining disease outcome in extra-pulmonary TB
Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method
Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV–visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30–40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90–3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles
- …