6 research outputs found
Recommended from our members
The transformation of earth-system observations into information of socio-economic value in GEOSS
The Group on Earth Observations System of Systems, GEOSS, is a co-ordinated initiative by many nations to address the needs for earth-system information expressed by the 2002 World Summit on Sustainable Development. We discuss the role of earth-system modelling and data assimilation in transforming earth-system observations into the predictive and status-assessment products required by GEOSS, across many areas of socio-economic interest. First we review recent gains in the predictive skill of operational global earth-system models, on time-scales of days to several seasons. We then discuss recent work to develop from the global predictions a diverse set of end-user applications which can meet GEOSS requirements for information of socio-economic benefit; examples include forecasts of coastal storm surges, floods in large river basins, seasonal crop yield forecasts and seasonal lead-time alerts for malaria epidemics. We note ongoing efforts to extend operational earth-system modelling and assimilation capabilities to atmospheric composition, in support of improved services for air-quality forecasts and for treaty assessment. We next sketch likely GEOSS observational requirements in the coming decades. In concluding, we reflect on the cost of earth observations relative to the modest cost of transforming the observations into information of socio-economic value
High Clouds over Oceans in the ECMWF 15- and 45-Yr Reanalyses
International audienceThe reanalysis programs of numerical weather prediction (NWP) centers provide global, comprehensive descriptions of the atmosphere and of the earth's surface over long periods of time. The high realism of their representation of key NWP parameters, like temperature and winds, implies some realism for less emblematic parameters, such as cloud cover, but the degree of this realism needs to be documented. This study aims to evaluate the high clouds over open oceans in the ECMWF 15-and 45-yr reanalyses. The assessment is based on a new 23-yr climatology of monthly frequencies of high-cloud occurrence retrieved from the infrared radiances measured by operational polar satellites. It is complemented by data from the International Satellite Cloud Climatology Project. It is shown that the 45-yr ECMWF reanalysis dramatically improves on the previous 15-yr reanalysis for the realism of seasonal and interannual variations in high clouds, despite remaining systematic errors. More than 60% of the observed anomalies during the January 1979-February 2002 period over large oceanic basins are captured by the latest reanalysis. However the realism of the analyses in the areas and in the years with sparse observations appears to be poor. Consequently, the interannual variations may not be reliable before January 1979 in most parts of the world. Possible improvements of the handling of assimilated satellite observations before and after this date are suggested
Reanalysis and reforecast of three major European storms of the twentieth century using the ECMWF forecasting system. Part II: Ensemble forecasts
Recommended from our members
Identification of Anthropogenic Climate Change Using a Second-Generation Reanalysis
Changes in the height of the tropopause provide a sensitive indicator of human effects on climate. A previous attempt to identify human effects on tropopause height relied on information from 'first-generation' reanalyses of past weather observations. Climate data from these initial model-based reanalyses have well-documented deficiencies, raising concerns regarding the robustness of earlier detection work that employed these data. Here, we address these concerns using information from the new second-generation ERA-40 reanalysis. Over 1979 to 2001, tropopause height increases by nearly 200 meters in ERA-40, partly due to tropospheric warming. The spatial pattern of height increase is consistent with climate model predictions of the expected response to anthropogenic influences alone, significantly strengthening earlier detection results. Atmospheric temperature changes in two different satellite datasets are more highly correlated with changes in ERA-40 than with those in a first-generation reanalysis, thus illustrating the improved quality of temperature information in ERA-40. Our results provide support for claims that human activities have warmed the troposphere and cooled the lower stratosphere over the last several decades of the 20th century, and that both of these changes in atmospheric temperature have contributed to an overall increase in tropopause height
