70 research outputs found

    Quantitative Contribution of CD4 and CD8 to T Cell Antigen Receptor Serial Triggering

    Get PDF
    CD4 and CD8 are thought to function as coreceptors by binding to the cognate major histocompatibility complex (MHC) molecules recognized by the T cell antigen receptor (TCR) and initiating the signal transduction cascade. We report that during T cell–antigen-presenting cell interaction, triggered TCRs and coreceptors are downregulated and degraded with identical kinetics. This coordinated disappearance takes place whenever the TCR is triggered, even when the coreceptor does not engage the cognate MHC molecule and is the consequence of binding of the coreceptor-associated Lck to ZAP-70. The interaction of coreceptor and cognate MHC molecules is dispensable when T cells are stimulated by optimal ligands, but becomes crucial when suboptimal ligands are used. In the latter case the coreceptor increases the efficiency of TCR triggering without changing the activation threshold or the quality of the T cell response

    The Efficiency of CD4 Recruitment to Ligand-engaged TCR Controls the Agonist/Partial Agonist Properties of Peptide–MHC Molecule Ligands

    Get PDF
    One hypothesis seeking to explain the signaling and biological properties of T cell receptor for antigen (TCR) partial agonists and antagonists is the coreceptor density/kinetic model, which proposes that the pharmacologic behavior of a TCR ligand is largely determined by the relative rates of (a) dissociation of ligand from an engaged TCR and (b) recruitment of lck-linked coreceptors to this ligand-engaged receptor. Using several approaches to prevent or reduce the association of CD4 with occupied TCR, we demonstrate that consistent with this hypothesis, the biological and biochemical consequence of limiting this interaction is to convert typical agonists into partial agonist stimuli. Thus, adding anti-CD4 antibody to T cells recognizing a wild-type peptide–MHC class II ligand leads to disproportionate inhibition of interleukin-2 (IL-2) relative to IL-3 production, the same pattern seen using a TCR partial agonist/antagonist. In addition, T cells exposed to wild-type ligand in the presence of anti-CD4 antibodies show a pattern of TCR signaling resembling that seen using partial agonists, with predominant accumulation of the p21 tyrosine-phosphorylated form of TCR-ζ, reduced tyrosine phosphorylation of CD3ε, and no detectable phosphorylation of ZAP-70. Similar results are obtained when the wild-type ligand is presented by mutant class II MHC molecules unable to bind CD4. Likewise, antibody coligation of CD3 and CD4 results in an agonist-like phosphorylation pattern, whereas bivalent engagement of CD3 alone gives a partial agonist-like pattern. Finally, in accord with data showing that partial agonists often induce T cell anergy, CD4 blockade during antigen exposure renders cloned T cells unable to produce IL-2 upon restimulation. These results demonstrate that the biochemical and functional responses to variant TCR ligands with partial agonist properties can be largely reproduced by inhibiting recruitment of CD4 to a TCR binding a wild-type ligand, consistent with the idea that the relative rates of TCR–ligand disengagement and of association of engaged TCR with CD4 may play a key role in determining the pharmacologic properties of peptide–MHC molecule ligands. Beyond this insight into signaling through the TCR, these results have implications for models of thymocyte selection and the use of anti-coreceptor antibodies in vivo for the establishment of immunological tolerance

    T Cell Integrin Overexpression as a Model of Murine Autoimmunity

    Get PDF
    Integrin adhesion molecules have important adhesion and signaling functions. They also play a central role in the pathogenesis of many autoimmune diseases. Over the past few years we have described a T cell adoptive transfer model to investigate the role of T cell integrin adhesion molecules in the development of autoimmunity. This report summarizes the methods we used in establishing this murine model. By treating murine CD4+ T cells with DNA hypomethylating agents and by transfection we were able to test the in vitro effects of integrin overexpression on T cell autoreactive proliferation, cytotoxicity, adhesion and trafficking. Furthermore, we showed that the ability to induce in vivo autoimmunity may be unique to the integrin lymphocyte function associated antigen-1 (LFA-1)
    • …
    corecore