227 research outputs found

    Outcomes After Minimally-invasive Versus Open Pancreatoduodenectomy: A Pan-European Propensity Score Matched Study

    Get PDF
    OBJECTIVE: To assess short-term outcomes after minimally invasive (laparoscopic, robot-assisted, and hybrid) pancreatoduodenectomy (MIPD) versus open pancreatoduodenectomy (OPD) among European centers. BACKGROUND: Current evidence on MIPD is based on national registries or single expert centers. International, matched studies comparing outcomes for MIPD and OPD are lacking. METHODS: Retrospective propensity score matched study comparing MIPD in 14 centers (7 countries) performing ≥10 MIPDs annually (2012-2017) versus OPD in 53 German/Dutch surgical registry centers performing ≥10 OPDs annually (2014-2017). Primary outcome was 30-day major morbidity (Clavien-Dindo ≥3). RESULTS: Of 4220 patients, 729/730 MIPDs (412 laparoscopic, 184 robot-assisted, and 130 hybrid) were matched to 729 OPDs. Median annual case-volume was 19 MIPDs (interquartile range, IQR 13-22), including the first MIPDs performed in 10/14 centers, and 31 OPDs (IQR 21-38). Major morbidity (28% vs 30%, P = 0.526), mortality (4.0% vs 3.3%, P = 0.576), percutaneous drainage (12% vs 12%, P = 0.809), reoperation (11% vs 13%, P = 0.329), and hospital stay (mean 17 vs 17 days, P > 0.99) were comparable between MIPD and OPD. Grade-B/C postoperative pancreatic fistula (POPF) (23% vs 13%, P < 0.001) occurred more frequently after MIPD. Single-row pancreatojejunostomy was associated with POPF in MIPD (odds ratio, OR 2.95, P < 0.001), but not in OPD. Laparoscopic, robot-assisted, and hybrid MIPD had comparable major morbidity (27% vs 27% vs 35%), POPF (24% vs 19% vs 25%), and mortality (2.9% vs 5.2% vs 5.4%), with a fewer conversions in robot-assisted- versus laparoscopic MIPD (5% vs 26%, P < 0.001). CONCLUSIONS: In the early experience of 14 European centers performing ≥10 MIPDs annually, no differences were found in major morbidity, mortality, and hospital stay between MIPD and OPD. The high rates of POPF and conversion, and the lack of superior outcomes (ie, hospital stay, morbidity) could indicate that more experience and higher annual MIPD volumes are needed

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Repression of Mitochondrial Translation, Respiration and a Metabolic Cycle-Regulated Gene, SLF1, by the Yeast Pumilio-Family Protein Puf3p

    Get PDF
    Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS) system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3′-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity

    Prospective, observational, multicenter study on minimally invasive gastrectomy for gastric cancer: robotic, laparoscopic and open surgery compared on operative and follow-up outcomes - IMIGASTRIC II study protocol: IMIGASTRIC II

    Get PDF
    Background:Several meta-analyses have tried to defi ne the role of minimally invasive approaches.&nbsp;However, further evidence to get a wider spread of these methods is necessary. Current&nbsp;studies describe minimally invasive surgery as a possible alternative to open surgery&nbsp;but deserving further clarifi cation. However, despite the increasing interest, the&nbsp;difficulty of planning prospective studies of adequate size accounts for the low level of&nbsp;evidence, which is mostly based on retrospective experiences.A multi-institutional prospective study allows the collection of an impressive amount&nbsp;of data to investigate various aspects of minimally invasive procedures with the&nbsp;opportunity of developing several subgroup analyses.A prospective data collection with high methodological quality on minimally invasive&nbsp;and open gastrectomies can clarify the role of diff erent procedures with the aim to&nbsp;develop specifi c guidelines.Methods and analysis:a multi-institutional prospective database will be established including information on&nbsp;surgical, clinical and oncological features of patients treated for gastric cancer with&nbsp;robotic, laparoscopic or open approaches and subsequent follow-up.The study has been shared by the members of the International study group on&nbsp;Minimally Invasive surgery for GASTRIc Cancer (IMIGASTRIC)The database is designed to be an international electronic submission system and a&nbsp;HIPPA protected real time data repository from high volume gastric cancer centers.Ethics:This study is conducted in compliance with ethical principles originating from the&nbsp;Helsinki Declaration, within the guidelines of Good Clinical Practice and relevantlaws/regulations.Trial registration number:NCT0275108

    A variant in XPNPEP2 is associated with angioedema induced by angiotensin I-converting enzyme inhibitors

    Get PDF
    Angiotensin I-converting enzyme inhibitors (ACEi), which are used to treat common cardiovascular diseases, are associated with a potentially life-threatening adverse reaction known as angioedema (AE-ACEi). We have previously documented a significant association between AE-ACEi and low plasma aminopeptidase P (APP) activity. With eight large pedigrees, we hereby demonstrate that this quantitative trait is partially regulated by genetic factors. We tested APP activity using a variance-component QTL analysis of a 10-cM genomewide microsatellite scan enriched with seven markers over two candidate regions. We found significant linkage (LOD = 3.75) to a locus that includes the YPNPEP2 candidate gene encoding membrane-bound APP. Mutation screening of this QTL identified a large coding deletion segregating in one pedigree and an upstream single-nucleotide polymorphism (C2399A SNP), which segregates in the remaining seven pedigrees. Measured genotype analysis strongly suggests that the linkage signal for APP activity at this locus is accounted for predominantly by the SNP association. In a separate case-control study (20 cases and 60 controls), we found significant association of this SNP to ACEi-induced AE (P =.0364). In conclusion, our findings provide supporting evidence that the C-2399A variant in YPNPEP2 is associated with reduced APP activity and a higher incidence of AE-ACEi

    Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation

    Get PDF
    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation

    Interaction of HP1 and Brg1/Brm with the Globular Domain of Histone H3 Is Required for HP1-Mediated Repression

    Get PDF
    The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling

    Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

    Get PDF
    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation
    corecore