645 research outputs found
Partition-Induced Vector Chromatography in Microfluidic Devices
The transport of Brownian particles in a slit geometry in the presence of an
arbitrary two-dimensional periodic energy landscape and driven by an external
force or convected by a flow field is investigated by means of macrotransport
theory. Analytical expressions for the probability distribution and the average
migration angle of the particles are obtained under the Fick-Jackobs
approximation. The migration angle is shown to differ from the orientation
angle of the driving field and to strongly depend on the physical properties of
the suspended species, thus providing the basis for vector chormatography, in
which different species move in different directions and can be continuously
fractionated. The potential of microfluidic devices as a platform for
partition-induced vector chromatography is demonstrated by considering the
particular case of a piece-wise constant, periodic potential that, in
equilibrium, induces the spontaneous partition of different species into high
and low concentration stripes, and which can be easily fabricated by patterning
physically or chemically one of the surfaces of a channel. The feasibility to
separate different particles of the same and different size is shown for
systems in which partition is induced via 1g-gravity and Van der Waals
interactions in physically and chemically patterned channels, respectively
Computational Relativistic Astrophysics With Adaptive Mesh Refinement: Testbeds
We have carried out numerical simulations of strongly gravitating systems
based on the Einstein equations coupled to the relativistic hydrodynamic
equations using adaptive mesh refinement (AMR) techniques. We show AMR
simulations of NS binary inspiral and coalescence carried out on a workstation
having an accuracy equivalent to that of a regular unigrid simulation,
which is, to the best of our knowledge, larger than all previous simulations of
similar NS systems on supercomputers. We believe the capability opens new
possibilities in general relativistic simulations.Comment: 7 pages, 16 figure
Mediator-less immunodetection with voltage-controlled intrinsic amplification for ultrasensitive and rapid detection of microorganism pathogens
A mediator-less immunodetection method for microorganisms is realized by incorporating the newly developed field-effect enzymatic detection (FEED) technique with the conventional electrochemical immunosensing approach. The gating voltage of FEED facilitates the transduction of electrical signal through the bulky immune complex so that the detection does not rely on the use of mediators or other diffusional substances. The voltage-controlled intrinsic amplification provided by the detection system allows detection in low-concentration samples without target pre-enrichment, leading to ultrasensitive and rapid detection. The detection approach is demonstrated with E. coliO157:H7, a model microorganism, in milk with an estimated detection limit of 20 CFU mL−1 (where CFU is a colony-forming unit) without performing sample pre-enrichment and centrifugation of sample followed by the resuspension of the pellet in a buffer solution, resulting in a significantly shortened assay time of 67 min. Optimizing the gating voltage resulted in the detection of 12 CFU mL−1 of the bacterium in milk. The novel detection approach can be used as a detection platform for ultrasensitive, specific and rapid detection of microorganism pathogens
Decoupling carrier concentration and electron-phonon coupling in oxide heterostructures observed with resonant inelastic x-ray scattering
We report the observation of multiple phonon satellite features in ultra thin
superlattices of form SrIrO/SrTiO using resonant inelastic x-ray
scattering. As the values of and vary the energy loss spectra show a
systematic evolution in the relative intensity of the phonon satellites. Using
a closed-form solution for the cross section, we extract the variation in the
electron-phonon coupling strength as a function of and . Combined with
the negligible carrier doping into the SrTiO layers, these results indicate
that tuning of the electron-phonon coupling can be effectively decoupled from
doping. This work showcases both a feasible method to extract the
electron-phonon coupling in superlattices and unveils a potential route for
tuning this coupling which is often associated with superconductivity in
SrTiO-based systems.Comment: 4 pages, 5 figure
Amine-Gold Linked Single-Molecule Junctions: Experiment and Theory
The measured conductance distribution for single molecule benzenediamine-gold
junctions, based on 59,000 individual conductance traces recorded while
breaking a gold point contact in solution, has a clear peak at 0.0064 G
with a width of 40%. Conductance calculations based on density functional
theory (DFT) for 15 distinct junction geometries show a similar spread.
Differences in local structure have a limited influence on conductance because
the amine-Au bonding motif is well-defined and flexible. The average calculated
conductance (0.046 G) is seven times larger than experiment, suggesting
the importance of many-electron corrections beyond DFT
Enabling Ideal Selective Solar Absorption with 2D Metallic Dielectric Photonic Crystals
A metallic dielectric photonic crystal with solar broadband, omni-directional, and tunable selective absorption with high temperature stable (1000 °C, 24 hrs) properties is fabricated on a 6” silicon wafer. The broadband absorption is due to a high density of optical cavity modes overlapped with an anti-reflection coating. Results allow for large-scale, low cost, and efficient solar-thermal energy conversion.United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-FG02-09ER46577
Recommended from our members
Nanocomposites of TiO₂/cyanoethylated cellulose with ultra high dielectric constants.
A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO2. The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO2/CRS nanofilms on SiO2/Si wafers were used to form metal-insulator-metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz-1 MHz were measured. At 1 kHz CRS-TiO2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO2 respectively, significantly higher than reported values of pure CRS (21), TiO2 (41) and other dielectric polymer-TiO2 nanocomposite films. Furthermore, all three CRS-TiO2 nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10(-6)-10(-7) A cm(-2)). Leakage was studied using conductive atomic force microscopy and it was observed that the leakage is associated with TiO2 nanoparticles embedded in the CRS polymer matrix. A new class of ultra high dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported.This work was supported by Dyson Ltd. NM is also grateful to the Cambridge Commonwealth Trust for financial support and Prof. William Jones, Department of Chemistry, University of Cambridge for providing additional laboratory facilities
A novel Hsp90 inhibitor AT13387 induces senescence in EBV-positive nasopharyngeal carcinoma cells and suppresses tumor formation
Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy strongly associated with Epstein-Barr virus (EBV). AT13387 is a novel heat shock protein 90 (Hsp90) inhibitor, which inhibits the chaperone function of Hsp90 and reduces expression of Hsp90-dependent client oncoproteins. This study aimed to evaluate both the in vitro and in vivo antitumor effects of AT13387 in the EBV-positive NPC cell line C666-1.Results: Our results showed that AT13387 inhibited C666-1 cell growth and induced cellular senescence with the downregulation of multiple Hsp90 client oncoproteins EGFR, AKT, CDK4, and restored the protein expression of negative cell cycle regulator p27. We also studied the ability of AT13387 to restore p27 expression by downregulation of AKT and the p27 ubiquitin mediator, Skp2, using AKT inhibitor and Skp2 siRNA. In the functional study, AT13387 inhibited cell migration with downregulation of a cell migration regulator, HDAC6, and increased the acetylation and stabilization of α-tubulin. We also examined the effect of AT13387 on putative cancer stem cells (CSC) by 3-D tumor sphere formation assay. AT13387 effectively reduced both the number and size of C666-1 tumor spheres with decreased expression of NPC CSC-like markers CD44 and SOX2. In the in vivo study, AT13387 significantly suppressed tumor formation in C666-1 NPC xenografts.Conclusion: AT13387 suppressed cell growth, cell migration, tumor sphere formation and induced cellular senescence on EBV-positive NPC cell line C666-1. Also, the antitumor effect of AT13387 was demonstrated in an in vivo model. This study provided experimental evidence for the preclinical value of using AT13387 as an effective antitumor agent in treatment of NPC. © 2013 Chan et al.; licensee BioMed Central Ltd.published_or_final_versio
Harvey: A Greybox Fuzzer for Smart Contracts
We present Harvey, an industrial greybox fuzzer for smart contracts, which
are programs managing accounts on a blockchain. Greybox fuzzing is a
lightweight test-generation approach that effectively detects bugs and security
vulnerabilities. However, greybox fuzzers randomly mutate program inputs to
exercise new paths; this makes it challenging to cover code that is guarded by
narrow checks, which are satisfied by no more than a few input values.
Moreover, most real-world smart contracts transition through many different
states during their lifetime, e.g., for every bid in an auction. To explore
these states and thereby detect deep vulnerabilities, a greybox fuzzer would
need to generate sequences of contract transactions, e.g., by creating bids
from multiple users, while at the same time keeping the search space and test
suite tractable. In this experience paper, we explain how Harvey alleviates
both challenges with two key fuzzing techniques and distill the main lessons
learned. First, Harvey extends standard greybox fuzzing with a method for
predicting new inputs that are more likely to cover new paths or reveal
vulnerabilities in smart contracts. Second, it fuzzes transaction sequences in
a targeted and demand-driven way. We have evaluated our approach on 27
real-world contracts. Our experiments show that the underlying techniques
significantly increase Harvey's effectiveness in achieving high coverage and
detecting vulnerabilities, in most cases orders-of-magnitude faster; they also
reveal new insights about contract code.Comment: arXiv admin note: substantial text overlap with arXiv:1807.0787
- …