154 research outputs found

    Structural variations of the cell wall precursor lipid II in Gram-positive bacteria — Impact on binding and efficacy of antimicrobial peptides

    Get PDF
    AbstractAntimicrobial peptides (AMPs) are natural antibiotics produced by virtually all living organisms. Typically, AMPs are cationic and amphiphilic and first contacts with target microbes involve interactions with negatively charged components of the cell envelope such as lipopolysaccharide (LPS), and wall- or lipoteichoic acids (WTA, LTA). The importance of charge-mediated interactions of AMPs with the cell envelope is reflected by effective microbial resistance mechanisms which are based on reduction of the overall charge of these polymers. The anionic polymers are linked in various ways to the stress-bearing polymer of the cell envelope, the peptidoglycan, which is made of a highly conserved building block, a disaccharide-pentapeptide moiety that also contains charged residues. This structural element, in spite of its conservation throughout the bacterial world, can undergo genus- and species-specific modifications that also impact significantly on the overall charge of the cell envelope and on the binding affinity of AMPs. The modification reactions involved largely occur on the membrane-bound peptidoglycan building block, the so-called lipid II, which is a most prominent target for AMPs. In this review, we focus on modifications of lipid II and peptidoglycan and discuss their consequences for the interactions with various classes of AMPs, such as defensins, lantibiotics and glyco-(lipo)-peptide antibiotics. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides

    Identification of defensin-encoding genes of Picea glauca: characterization of PgD5, a conserved spruce defensin with strong antifungal activity

    Get PDF
    Background: Plant defensins represent a major innate immune protein superfamily that displays strong inhibitory effects on filamentous fungi. The total number of plant defensins in a conifer species is unknown since there are no sequenced conifer genomes published, however the genomes of several angiosperm species provide an insight on the diversity of plant defensins. Here we report the identification of five new defensin-encoding genes from the Picea glauca genome and the characterization of two of their gene products, named PgD5 and endopiceasin. Results: Screening of a P. glauca EST database with sequences of known plant defensins identified four genes with homology to the known P. glauca defensin PgD1, which were designated PgD2-5. Whereas in the mature PgD2-4 only 7-9 amino acids differed from PgD1, PgD5 had only 64% sequence identity. PgD5 was amplified from P. glauca genomic DNA by PCR. It codes for a precursor of 77-amino acid that is fully conserved within the Picea genus and has similarity to plant defensins. Recombinant PgD5, produced in Escherichia coli, had a molecular mass of 5.721 kDa, as determined by mass spectrometry. The PgD5 peptide exhibited strong antifungal activity against several phytopathogens without any effect on the morphology of the treated fungal hyphae, but strongly inhibited hyphal elongation. A SYTOX uptake assay suggested that the inhibitory activity of PgD5 could be associated with altering the permeability of the fungal membranes. Another completely unrelated defensin gene was identified in the EST library and named endopiceasin. Its gene codes for a 6-cysteine peptide that shares high similarity with the fungal defensin plectasin. Conclusions: Screening of a P. glauca EST database resulted in the identification of five new defensin-encoding genes. PgD5 codes for a plant defensin that displays non-morphogenic antifungal activity against the phytopathogens tested, probably by altering membrane permeability. PgD5 has potential for application in the plant biotechnology sector. Endopiceasin appears to derive from an endo- or epiphytic fungal strain rather than from the plant itself. Keywords: Spruce defensins, Endophyte, Antifungal activity, Membrane permeabilizatio

    The lantibiotic mersacidin is a strong inducer of the cell wall stress response of Staphylococcus aureus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lantibiotic mersacidin is an antimicrobial peptide of 20 amino acids that is ribosomally produced by <it>Bacillus </it>sp. strain HIL Y-85,54728. Mersacidin acts by complexing the sugar phosphate head group of the peptidoglycan precursor lipid II, thereby inhibiting the transglycosylation reaction of peptidoglycan biosynthesis.</p> <p>Results</p> <p>Here, we studied the growth of <it>Staphylococcus aureus </it>in the presence of subinhibitory concentrations of mersacidin. Transcriptional data revealed an extensive induction of the cell wall stress response, which is partly controlled by the two-component regulatory system VraSR. In contrast to other cell wall-active antibiotics such as vancomycin, very low concentrations of mersacidin (0.15 × MIC) were sufficient for induction. Interestingly, the cell wall stress response was equally induced in vancomycin intermediately resistant <it>S. aureus </it>(VISA) and in a highly susceptible strain. Since the transcription of the VraDE ABC transporter genes was induced up to 1700-fold in our experiments, we analyzed the role of VraDE in the response to mersacidin. However, the deletion of the <it>vraE </it>gene did not result in an increased susceptibility to mersacidin compared to the wild type strain. Moreover, the efficacy of mersacidin was not affected by an increased cell wall thickness, which is part of the VISA-type resistance mechanism and functions by trapping the vancomycin molecules in the cell wall before they reach lipid II. Therefore, the relatively higher concentration of mersacidin at the membrane might explain why mersacidin is such a strong inducer of VraSR compared to vancomycin.</p> <p>Conclusion</p> <p>In conclusion, mersacidin appears to be a strong inducer of the cell wall stress response of <it>S. aureus </it>at very low concentrations, which reflects its general mode of action as a cell wall-active peptide as well as its use of a unique target site on lipid II. Additionally, mersacidin does not seem to be a substrate for the resistance transporter VraDE.</p

    The Lantibiotic Nisin Induces Lipid II Aggregation, Causing Membrane Instability and Vesicle Budding

    Get PDF
    AbstractThe antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane

    Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding how pathogens respond to antimicrobial peptides, and how this compares to currently available antibiotics, is crucial for optimizing antimicrobial therapy. <it>Staphylococcus aureus </it>has several known resistance mechanisms against human cationic antimicrobial peptides (CAMPs). Gene expression changes in <it>S. aureus </it>strain Newman exposed to linear CAMPs were analyzed by DNA microarray. Three antimicrobial peptides were used in the analysis, two are derived from frog, temporin L and dermaseptin K4-S4(1-16), and the ovispirin-1 is obtained from sheep.</p> <p>Results</p> <p>The peptides induced the VraSR cell-wall regulon and several other genes that are also up-regulated in cells treated with vancomycin and other cell wall-active antibiotics. In addition to this similarity, three genes/operons were particularly strongly induced by the peptides: <it>vraDE</it>, SA0205 and SAS016, encoding an ABC transporter, a putative membrane-bound lysostaphin-like peptidase and a small functionally unknown protein, respectively. Ovispirin-1 and dermaseptin K4-S4(1-16), which disrupt lipid bilayers by the carpet mechanism, appeared to be strong inducers of the <it>vraDE </it>operon. We show that high level induction by ovispirin-1 is dependent on the amide modification of the peptide C-terminus. This suggests that the amide group has a crucial role in the activation of the Aps (GraRS) sensory system, the regulator of <it>vraDE</it>. In contrast, temporin L, which disrupts lipid bilayers by forming pores, revealed a weaker inducer of <it>vraDE </it>despite the C-terminal amide modification. Sensitivity testing with CAMPs and other antimicrobials suggested that VraDE is a transporter dedicated to resist bacitracin. We also showed that SA0205 belongs to the VraSR regulon. Furthermore, VraSR was shown to be important for resistance against a wide range of cell wall-active antibiotics and other antimicrobial agents including the amide-modified ovispirin-1, bacitracin, teicoplanin, cefotaxime and 10 other β-lactam antibiotics, chlorpromazine, thioridazine and EGTA.</p> <p>Conclusion</p> <p>Defense against different CAMPs involves not only general signaling pathways but also CAMP-specific ones. These results suggest that CAMPs or a mixture of CAMPs could constitute a potential additive to standard antibiotic treatment.</p

    Expression of the Lantibiotic Mersacidin in Bacillus amyloliquefaciens FZB42

    Get PDF
    Lantibiotics are small peptide antibiotics that contain the characteristic thioether amino acids lanthionine and methyllanthionine. As ribosomally synthesized peptides, lantibiotics possess biosynthetic gene clusters which contain the structural gene (lanA) as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP), regulation (lanR, lanK), export (lanT(P)) and immunity (lanEFG). The lantibiotic mersacidin is produced by Bacillus sp. HIL Y-85,54728, which is not naturally competent

    Functional Analysis of the Cytoskeleton Protein MreB from Chlamydophila pneumoniae

    Get PDF
    In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae

    Identification and in vitro Analysis of the GatD/MurT Enzyme-Complex Catalyzing Lipid II Amidation in Staphylococcus aureus

    Get PDF
    The peptidoglycan of Staphylococcus aureus is characterized by a high degree of crosslinking and almost completely lacks free carboxyl groups, due to amidation of the D-glutamic acid in the stem peptide. Amidation of peptidoglycan has been proposed to play a decisive role in polymerization of cell wall building blocks, correlating with the crosslinking of neighboring peptidoglycan stem peptides. Mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin. We identified the enzymes catalyzing the formation of D-glutamine in position 2 of the stem peptide. We provide biochemical evidence that the reaction is catalyzed by a glutamine amidotransferase-like protein and a Mur ligase homologue, encoded by SA1707 and SA1708, respectively. Both proteins, for which we propose the designation GatD and MurT, are required for amidation and appear to form a physically stable bi-enzyme complex. To investigate the reaction in vitro we purified recombinant GatD and MurT His-tag fusion proteins and their potential substrates, i.e. UDP-MurNAc-pentapeptide, as well as the membrane-bound cell wall precursors lipid I, lipid II and lipid II-Gly5. In vitro amidation occurred with all bactoprenol-bound intermediates, suggesting that in vivo lipid II and/or lipid II-Gly5 may be substrates for GatD/MurT. Inactivation of the GatD active site abolished lipid II amidation. Both, murT and gatD are organized in an operon and are essential genes of S. aureus. BLAST analysis revealed the presence of homologous transcriptional units in a number of gram-positive pathogens, e.g. Mycobacterium tuberculosis, Streptococcus pneumonia and Clostridium perfringens, all known to have a D-iso-glutamine containing PG. A less negatively charged PG reduces susceptibility towards defensins and may play a general role in innate immune signaling

    Bactericidal Activity of the Human Skin Fatty Acid cis-6-Hexadecanoic Acid on Staphylococcus aureus

    Get PDF
    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents
    • …
    corecore