Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance

Abstract

<p>Abstract</p> <p>Background</p> <p>Understanding how pathogens respond to antimicrobial peptides, and how this compares to currently available antibiotics, is crucial for optimizing antimicrobial therapy. <it>Staphylococcus aureus </it>has several known resistance mechanisms against human cationic antimicrobial peptides (CAMPs). Gene expression changes in <it>S. aureus </it>strain Newman exposed to linear CAMPs were analyzed by DNA microarray. Three antimicrobial peptides were used in the analysis, two are derived from frog, temporin L and dermaseptin K4-S4(1-16), and the ovispirin-1 is obtained from sheep.</p> <p>Results</p> <p>The peptides induced the VraSR cell-wall regulon and several other genes that are also up-regulated in cells treated with vancomycin and other cell wall-active antibiotics. In addition to this similarity, three genes/operons were particularly strongly induced by the peptides: <it>vraDE</it>, SA0205 and SAS016, encoding an ABC transporter, a putative membrane-bound lysostaphin-like peptidase and a small functionally unknown protein, respectively. Ovispirin-1 and dermaseptin K4-S4(1-16), which disrupt lipid bilayers by the carpet mechanism, appeared to be strong inducers of the <it>vraDE </it>operon. We show that high level induction by ovispirin-1 is dependent on the amide modification of the peptide C-terminus. This suggests that the amide group has a crucial role in the activation of the Aps (GraRS) sensory system, the regulator of <it>vraDE</it>. In contrast, temporin L, which disrupts lipid bilayers by forming pores, revealed a weaker inducer of <it>vraDE </it>despite the C-terminal amide modification. Sensitivity testing with CAMPs and other antimicrobials suggested that VraDE is a transporter dedicated to resist bacitracin. We also showed that SA0205 belongs to the VraSR regulon. Furthermore, VraSR was shown to be important for resistance against a wide range of cell wall-active antibiotics and other antimicrobial agents including the amide-modified ovispirin-1, bacitracin, teicoplanin, cefotaxime and 10 other β-lactam antibiotics, chlorpromazine, thioridazine and EGTA.</p> <p>Conclusion</p> <p>Defense against different CAMPs involves not only general signaling pathways but also CAMP-specific ones. These results suggest that CAMPs or a mixture of CAMPs could constitute a potential additive to standard antibiotic treatment.</p

    Similar works