12 research outputs found

    ADAR1 Transcriptome editing promotes breast cancer progression through the regulation of cell cycle and DNA damage response

    No full text
    RNA editing has emerged as a novel mechanism in cancer progression. The double stranded RNA-specific adenosine deaminase (ADAR) modifies the expression of an important proportion of genes involved in cell cycle control, DNA damage response (DDR) and transcriptional processing, suggesting an important role of ADAR in transcriptome regulation. Despite the phenotypic implications of ADAR deregulation in several cancer models, the role of ADAR on DDR and proliferation in breast cancer has not been fully addressed. Here, we show that ADAR expression correlates significantly with clinical outcomes and DDR, cell cycle and proliferation mRNAs of previously reported edited transcripts in breast cancer patients. ADAR's knock-down in a breast cancer cell line produces stability changes of mRNAs involved in DDR and DNA replication. Breast cancer cells with reduced levels of ADAR show a decreased viability and an increase in apoptosis, displaying a significant decrease of their DDR activation, compared to control cells. These results suggest that ADAR plays an important role in breast cancer progression through the regulation of mRNA stability and expression of those genes involved in proliferation and DDR impacting the viability of breast cancer cells.Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 3190738 1151446 1151435 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) 21130361 2116120

    TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines

    No full text
    © 2018 Wiley Periodicals, Inc. Transient Receptor Potential Melastatin 4 (TRPM4) is a Ca2+-activated and voltage-dependent monovalent cation channel, which depolarizes the plasma cell membrane, thereby modulating Ca2+ influx across Ca2+-permeable pathways. TRPM4 is involved in different physiological processes such as T cell activation and the migration of endothelial and certain immune cells. Overexpression of this channel has been reported in various types of tumors including prostate cancer. In this study, a significant overexpression of TRPM4 was found only in samples from cancer with a Gleason score higher than 7, which are more likely to spread. To evaluate whether TRPM4 overexpression was related to the spreading capability of tumors, TRPM4 was knockdown by using shRNAs in PC3 prostate cancer cells and the effect on cellular migration and invasion was analyzed. PC3 cells with reduced levels of TRPM4 (shTRPM4) display a decrease of the migration/invasion capability. A reduction

    ADAR1-mediated RNA-editing of 3'UTRs in breast cancer

    No full text
    RESULTS: We characterized A to G(I) mRNA editing in 81 breast cell lines, showing increased editing at 3'UTR and exonic regions in breast cancer cells compared to immortalized non-malignant cell lines. In addition, tumors from the BRCA TCGA cohort show a 24% increase in editing over normal breast samples when looking at 571 well-characterized UTRs targeted by ADAR1. Basal-like subtype breast cancer patients with high level of ADAR1 mRNA expression shows a worse clinical outcome and increased editing in their 3'UTRs. Interestingly, editing was particularly increased in the 3'UTRs of ATM, GINS4 and POLH transcripts in tumors, which correlated with their mRNA expression. We confirmed the role of ADAR1 in this regulation using a shRNA in a breast cancer cell line (ZR-75-1).CONCLUSIONS: Altogether, these results revealed a significant association between the mRNA editing in genes related to cancer-relevant pathways and clinical outcomes, suggesting an important role of ADAR1 expression an

    TRPM4 regulates Akt/GSK3‐ÎČ activity and enhances ÎČ‐catenin signaling and cell proliferation in prostate cancer cells

    Get PDF
    Increased expression of the TRPM4 channel has been reported to be associated with the progression of prostate cancer. However, the molecular mechanism underlying its effect remains unknown. This work found that decreasing TRPM4 levels leads to the reduced proliferation of PC3 cells. This effect was associated with a decrease in total ÎČ‐catenin protein levels and its nuclear localization, and a significant reduction in Tcf/Lef transcriptional activity. Moreover, TRPM4 silencing increases the Ser33/Ser37/Thr41 ÎČ‐catenin phosphorylated population and reduces the phosphorylation of GSK‐3ÎČ at Ser9, suggesting an increase in ÎČ‐catenin degradation as the underlying mechanism. Conversely, TRPM4 overexpression in LNCaP cells increases the Ser9 inhibitory phosphorylation of GSK‐3ÎČ and the total levels of ÎČ‐catenin and its nonphosphorylated form. Finally, PC3 cells with reduced levels of TRPM4 showed a decrease in basal and stimulated phosphoactivation of Akt1, which is likely responsible for the decrease in GSK‐3ÎČ activity in these cells. Our results also suggest that the effect of TRPM4 on Akt1 is probably mediated by an alteration in the calcium/calmodulin‐EGFR axis, linking TRPM4 activity with the observed effects in ÎČ‐catenin‐related signaling pathways. These results suggest a role for TRPM4 channels in ÎČ‐catenin oncogene signaling and underlying mechanisms, highlighting this ion channel as a new potential target for future therapies in prostate cancer

    Genotoxic stress triggers the activation of IRE1α-dependent RNA decay to modulate the DNA damage response

    Get PDF
    International audienceThe molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis
    corecore