97 research outputs found

    Proliferation & Instability: How Nuclear Weapons Acquisition Alters Inter-state Relations

    Get PDF
    I theorize that in a dyad of a status quo nuclear state and a new nuclear state, the stage of nuclear development of the new nuclear state affects the level of tensions that the status quo nuclear state directs at the new nuclear state. Threat perception is the variable that causes the status quo nuclear state to respond to the new nuclear stateā€™s stages of nuclear development. I hypothesize that as the new nuclear state develops its nuclear arsenal, tensions will rise until the new nuclear stateā€™s first nuclear test and then fall. This thesis tests this theory through a mixed methods approach of both quantitative analysis and case studies. The results suggest that there is some support for this theory, particularly in the cases examined

    Targeted germ line disruptions reveal general and species-specific roles for paralog group 1 hox genes in zebrafish

    Get PDF
    BACKGROUND: The developing vertebrate hindbrain is transiently segmented into rhombomeres by a process requiring Hox activity. Hox genes control specification of rhombomere fates, as well as the stereotypic differentiation of rhombomere-specific neuronal populations. Accordingly, germ line disruption of the paralog group 1 (PG1) Hox genes Hoxa1 and Hoxb1 causes defects in hindbrain segmentation and neuron formation in mice. However, antisense-mediated interference with zebrafish hoxb1a and hoxb1b (analogous to murine Hoxb1 and Hoxa1, respectively) produces phenotypes that are qualitatively and quantitatively distinct from those observed in the mouse. This suggests that PG1 Hox genes may have species-specific functions, or that anti-sense mediated interference may not completely inactivate Hox function in zebrafish. RESULTS: Using zinc finger and TALEN technologies, we disrupted hoxb1a and hoxb1b in the zebrafish germ line to establish mutant lines for each gene. We find that zebrafish hoxb1a germ line mutants have a more severe phenotype than reported for Hoxb1a antisense treatment. This phenotype is similar to that observed in Hoxb1 knock out mice, suggesting that Hoxb1/hoxb1a have the same function in both species. Zebrafish hoxb1b germ line mutants also have a more severe phenotype than reported for hoxb1b antisense treatment (e.g. in the effect on Mauthner neuron differentiation), but this phenotype differs from that observed in Hoxa1 knock out mice (e.g. in the specification of rhombomere 5 (r5) and r6), suggesting that Hoxa1/hoxb1b have species-specific activities. We also demonstrate that Hoxb1b regulates nucleosome organization at the hoxb1a promoter and that retinoic acid acts independently of hoxb1b to activate hoxb1a expression. CONCLUSIONS: We generated several novel germ line mutants for zebrafish hoxb1a and hoxb1b. Our analyses indicate that Hoxb1 and hoxb1a have comparable functions in zebrafish and mouse, suggesting a conserved function for these genes. In contrast, while Hoxa1 and hoxb1b share functions in the formation of r3 and r4, they differ with regards to r5 and r6, where Hoxa1 appears to control formation of r5, but not r6, in the mouse, whereas hoxb1b regulates formation of r6, but not r5, in zebrafish. Lastly, our data reveal independent regulation of hoxb1a expression by retinoic acid and Hoxb1b in zebrafish

    TALE and NF-Y co-occupancy marks enhancers of developmental control genes during zygotic genome activation in zebrafish [preprint]

    Get PDF
    Animal embryogenesis is initiated by maternal factors, but zygotic genome activation (ZGA) shifts control to the embryo at early blastula stages. ZGA is thought to be mediated by specialized maternally deposited transcription factors (TFs), but here we demonstrate that NF-Y and TALE ā€“ TFs with known later roles in embryogenesis ā€“ co-occupy unique genomic elements at zebrafish ZGA. We show that these elements are selectively associated with early-expressed genes involved in transcriptional regulation and possess enhancer activity in vivo. In contrast, we find that elements individually occupied by either NF-Y or TALE are associated with genes acting later in development ā€“ such that NF-Y controls a cilia gene expression program while TALE TFs control expression of hox genes. We conclude that NF-Y and TALE have a shared role at ZGA, but separate roles later during development, demonstrating that combinations of known TFs can regulate subsets of key developmental genes at vertebrate ZGA

    TCR Recognition and Selection In Vivo

    Get PDF
    Much has been accomplished in identifying the molecules and genes responsible for T-cell recognition. We are now familiar with two distinct heterodimers, Ī±Ī² and Ī³Ī“, and we know that the former (at least) confers on a T cell the ability to recognize antigens complexed with specific molecules of the major histocompatibility complex (MHC) (Dembic et al. 1986; Saito and Germain 1987). Because of the recent solution of an MHC class I structure (Bjorkman et al. 1987a,b), its apparent generalization to class II molecules (Brown et al. 1988), as well as the similarity of T-cell receptor (TCR) primary sequences to immunoglobulins (Igs), we can guess a great deal about how they might interact (Chothia et al. 1988, Claverie et al. 1989; Davis and Bjorkman 1988; see also Bjorkman and Davis, this volume)

    HOX paralogs selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of enhancer activation [preprint]

    Get PDF
    Gene expression programs determine cell fate in embryonic development and their dysregulation results in disease. Transcription factors (TFs) control gene expression by binding to enhancers, but how TFs select and activate their target enhancers is still unclear. HOX TFs share conserved homeodomains with highly similar sequence recognition properties, yet they impart the identity of different animal body parts. To understand how HOX TFs control their specific transcriptional programs in vivo, we compared HOXA2 and HOXA3 binding profiles in the mouse embryo. HOXA2 and HOXA3 directly cooperate with TALE TFs and selectively target different subsets of a broad TALE chromatin platform. Binding of HOX and tissue-specific TFs convert low affinity TALE binding into high confidence, tissue-specific binding events, which bear the mark of active enhancers. We propose that HOX paralogs, alone and in combination with tissue-specific TFs, generate tissue-specific transcriptional outputs by modulating the activity of TALE TFs at selected enhancers

    Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.

    Get PDF
    Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P) is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic cellular behaviors. Within the Pbx family of genes encoding Three Amino-acid Loop Extension (TALE) homeodomain-containing TFs, we previously established that in the mouse, Pbx1 plays a preeminent role in midfacial morphogenesis, and Pbx2 and Pbx3 execute collaborative functions in domains of coexpression. We also reported that Pbx1 loss from cephalic epithelial domains, on a Pbx2- or Pbx3-deficient background, results in CL/P via disruption of a regulatory network that controls apoptosis at the seam of frontonasal and maxillary process fusion. Conversely, Pbx1 loss in cranial neural crest cell (CNCC)-derived mesenchyme on a Pbx2-deficient background results in CPO, a phenotype not yet characterized. In this study, we provide in-depth analysis of PBX1 and PBX2 protein localization from early stages of midfacial morphogenesis throughout development of the secondary palate. We further establish CNCC-specific roles of PBX TFs and describe the developmental abnormalities resulting from their loss in the murine embryonic secondary palate. Additionally, we compare and contrast the phenotypes arising from PBX1 loss in CNCC with those caused by its loss in the epithelium and show that CNCC-specific Pbx1 deletion affects only later secondary palate morphogenesis. Moreover, CNCC mutants exhibit perturbed rostro-caudal organization and broadening of the midfacial complex. Proliferation defects are pronounced in CNCC mutants at gestational day (E)12.5, suggesting altered proliferation of mutant palatal progenitor cells, consistent with roles of PBX factors in maintaining progenitor cell state. Although the craniofacial skeletal abnormalities in CNCC mutants do not result from overt patterning defects, osteogenesis is delayed, underscoring a critical role of PBX factors in CNCC morphogenesis and differentiation. Overall, the characterization of tissue-specific Pbx loss-of-function mouse models with orofacial clefting establishes these strains as unique tools to further dissect the complexities of this congenital craniofacial malformation. This study closely links PBX TALE homeodomain proteins to the variation in maxillary shape and size that occurs in pathological settings and during evolution of midfacial morphology

    A Mathematical Model for Suppression Subtractive Hybridization

    Get PDF
    Suppression subtractive hybridization (SSH) is frequently used to unearth differentially expressed genes on a whole-genome scale. Its versatility is based on combining cDNA library subtraction and normalization, which allows the isolation of sequences of varying degrees of abundance and differential expression. SSH is a complex process with many adjustable parameters that affect the outcome of gene isolation.We present a mathematical model of SSH based on DNA hybridization kinetics for assessing the effect of various parameters to facilitate its optimization. We derive an equation for the probability that a particular differentially expressed species is successfully isolated and use this to quantify the effect of the following parameters related to the cDNA sample: (a) mRNA abundance; (b) partial sequence complementarity to other species; and (3) degree of differential expression. We also evaluate the effect of parameters related to the process, including: (a) reaction times; and (b) extent of driver excess used in the two hybridization reactions. The optimum set of process parameters for successful isolation of differentially expressed species depends on transcript abundance. We show that the reaction conditions have a significant effect on the occurrence of false-positives and formulate strategies to isolate specific subsets of differentially expressed genes. We also quantify the effect of non-specific hybridization on the false-positive results and present strategies for spiking cDNA sequences to address this problem

    The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer

    Get PDF
    The fragile X mental retardation protein (FMRP) is a RNA-binding protein proposed to post-transcriptionally regulate the expression of genes important for neuronal development and synaptic plasticity. We previously demonstrated that FMRP binds to its own FMR1 mRNA via a guanine-quartet (G-quartet) RNA motif. However, the functional effect of this binding on FMR1 expression was not established. In this work, we characterized the FMRP binding site (FBS) within the FMR1 mRNA by a site directed mutagenesis approach and we investigated its importance for FMR1 expression. We show that the FBS in the FMR1 mRNA adopts two alternative G-quartet structures to which FMRP can equally bind. While FMRP binding to mRNAs is generally proposed to induce translational regulation, we found that mutations in the FMR1 mRNA suppressing binding to FMRP do not affect its translation in cellular models. We show instead that the FBS is a potent exonic splicing enhancer in a minigene system. Furthermore, FMR1 alternative splicing is affected by the intracellular level of FMRP. These data suggest that the G-quartet motif present in the FMR1 mRNA can act as a control element of its alternative splicing in a negative autoregulatory loop

    The association of PBX1 polymorphisms with overweight/obesity and metabolic alterations in the Korean population

    Get PDF
    Pre-B-cell leukemia transcription factor 1 (PBX1), which is located on chromosome 1q23, was recently reported to be associated with type 2 diabetes mellitus. We examined whether single nucleotide polymorphisms (SNPs) of the PBX1 gene are associated with overweight/obesity in a Korean population. We genotyped 66 SNPs in the PBX1 gene and investigated their association with clinical phenotypes found in 214 overweight/obese subjects and 160 control subjects using the Affymetrix Targeted Genotyping chip array. Seven SNPs (g.+75186C>T, g.+78350C>A, g.+80646C>T, g.+138004C>T, g.+185219G>A, g.+191272A>C, and g.+265317T>A) were associated with the risk of obesity in three models (codominant, dominant, and recessive) (P=0.007-0.05). Haplotype 1 (CAC) and 3 (TAC) of block 3 and haplotype 2 (GGAAT) of block 10 were also strongly associated with the risk of obesity. In the control group, subjects that had homozygote for the major allele for both g.+185219G>A and g.+191272A>C showed lower high density lipoprotein-cholesterol (HDL-C) level compared to those possessing the minor allele, suggesting that the association between the homozygote for the major allele for both g.+185219G>A and g.+191272A>C and HDL-C is attributable to the increased risk of obesity. This study suggests that the PBX1 gene is a possible risk factor in overweight/obese patients

    Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing

    Get PDF
    BACKGROUND: Alternative splicing contributes significantly to the complexity of the human transcriptome and proteome. Computational prediction of alternative splice isoforms are usually based on EST sequences that also allow to approximate the expression pattern of the related transcripts. However, the limited number of tissues represented in the EST data as well as the different cDNA construction protocols may influence the predictive capacity of ESTs to unravel tissue-specifically expressed transcripts. METHODS: We predict tissue and tumor specific splice isoforms based on the genomic mapping (SpliceNest) of the EST consensus sequences and library annotation provided in the GeneNest database. We further ascertain the potentially rare tissue specific transcripts as the ones represented only by ESTs derived from normalized libraries. A subset of the predicted tissue and tumor specific isoforms are then validated via RT-PCR experiments over a spectrum of 40 tissue types. RESULTS: Our strategy revealed 427 genes with at least one tissue specific transcript as well as 1120 genes showing tumor specific isoforms. While our experimental evaluation of computationally predicted tissue-specific isoforms revealed a high success rate in confirming the expression of these isoforms in the respective tissue, the strategy frequently failed to detect the expected restricted expression pattern. The analysis of putative lowly expressed transcripts using normalized cDNA libraries suggests that our ability to detect tissue-specific isoforms strongly depends on the expression level of the respective transcript as well as on the sensitivity of the experimental methods. Especially splice isoforms predicted to be disease-specific tend to represent transcripts that are expressed in a set of healthy tissues rather than novel isoforms. CONCLUSIONS: We propose to combine the computational prediction of alternative splice isoforms with experimental validation for efficient delineation of an accurate set of tissue-specific transcripts
    • ā€¦
    corecore