35 research outputs found

    Growth response to fertilizer in a young aspen-birch stand

    Get PDF

    Examining the Support Peer Supporters Provide Using Structural Equation Modeling: Nondirective and Directive Support in Diabetes Management

    Get PDF
    Background: Little research has examined the characteristics of peer support. Pertinent to such examination may be characteristics such as the distinction between nondirective support (accepting recipients’ feelings and cooperative with their plans) and directive (prescribing “correct” choices and feelings). Purpose: In a peer support program for individuals with diabetes, this study examined (a) whether the distinction between nondirective and directive support was reflected in participants’ ratings of support provided by peer supporters and (b) how nondirective and directive support were related to depressive symptoms, diabetes distress, and Hemoglobin A1c (HbA1c). Methods: Three hundred fourteen participants with type 2 diabetes provided data on depressive symptoms, diabetes distress, and HbA1c before and after a diabetes management intervention delivered by peer supporters. At post-intervention, participants reported how the support provided by peer supporters was nondirective or directive. Confirmatory factor analysis (CFA), correlation analyses, and structural equation modeling examined the relationships among reports of nondirective and directive support, depressive symptoms, diabetes distress, and measured HbA1c. Results: CFA confirmed the factor structure distinguishing between nondirective and directive support in participants’ reports of support delivered by peer supporters. Controlling for demographic factors, baseline clinical values, and site, structural equation models indicated that at post-intervention, participants’ reports of nondirective support were significantly associated with lower, while reports of directive support were significantly associated with greater depressive symptoms, altogether (with control variables) accounting for 51% of the variance in depressive symptoms. Conclusions: Peer supporters’ nondirective support was associated with lower, but directive support was associated with greater depressive symptoms

    Projections of incident atherosclerotic cardiovascular disease and incident type 2 diabetes across evolving statin treatment guidelines and recommendations: A modelling study

    Get PDF
    Background Experimental and observational research has suggested the potential for increased type 2 diabetes (T2D) risk among populations taking statins for the primary prevention of atherosclerotic cardiovascular disease (ASCVD). However, few studies have directly compared statin-associated benefits and harms or examined heterogeneity by population subgroups or assumed treatment effect. Thus, we compared ASCVD risk reduction and T2D incidence increases across 3 statin treatment guidelines or recommendations among adults without a history of ASCVD or T2D who were eligible for statin treatment initiation. Methods and findings Simulations were conducted using Markov models that integrated data from contemporary population-based studies of non-Hispanic African American and white adults aged 40–75 years with published meta-analyses. Statin treatment eligibility was determined by predicted 10-year ASCVD risk (5%, 7.5%, or 10%). We calculated the number needed to treat (NNT) to prevent one ASCVD event and the number needed to harm (NNH) to incur one incident case of T2D. The likelihood to be helped or harmed (LHH) was calculated as ratio of NNH to NNT. Heterogeneity in statin-associated benefit was examined by sex, age, and statin-associated T2D relative risk (RR) (range: 1.11–1.55). A total of 61,125,042 U.S. adults (58.5% female; 89.4% white; mean age = 54.7 years) composed our primary prevention population, among whom 13–28 million adults were eligible for statin initiation. Overall, the number of ASCVD events prevented was at least twice as large as the number of incident cases of T2D incurred (LHH range: 2.26–2.90). However, the number of T2D cases incurred surpassed the number of ASCVD events prevented when higher statin-associated T2D RRs were assumed (LHH range: 0.72–0.94). In addition, females (LHH range: 1.74–2.40) and adults aged 40–50 years (LHH range: 1.00–1.14) received lower absolute benefits of statin treatment compared with males (LHH range: 2.55–3.00) and adults aged 70–75 years (LHH range: 3.95–3.96). Projected differences in LHH by age and sex became more pronounced as statin-associated T2D RR increased, with a majority of scenarios projecting LHHs < 1 for females and adults aged 40–50 years. This study’s primary limitation was uncertainty in estimates of statin-associated T2D risk, highlighting areas in which additional clinical and public health research is needed

    Fire as a fundamental ecological process: Research advances and frontiers

    Get PDF
    Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire‐dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study. Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above‐ground ecology, (d) fire effects on below‐ground ecology, (e) fire behaviour and (f) fire ecology modelling. We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts. Synthesis : As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives

    PCSK9 Loss-of-Function Variants, Low-Density Lipoprotein Cholesterol, and Risk of Coronary Heart Disease and Stroke: Data from 9 Studies of Blacks and Whites

    Get PDF
    PCSK9 loss-of-function (LOF) variants allow for the examination of the effects of lifetime reduced low-density lipoprotein cholesterol (LDL-C) on cardiovascular events. We examined the association of PCSK9 LOF variants with LDL-C and incident coronary heart disease and stroke through a meta-analysis of data from 8 observational cohorts and 1 randomized trial of statin therapy. Methods and Results - These 9 studies together included 17 459 blacks with 403 (2.3%) having at least 1 Y142X or C679X variant and 31 306 whites with 955 (3.1%) having at least 1 R46L variant. Unadjusted odds ratios for associations between PCSK9 LOF variants and incident coronary heart disease (851 events in blacks and 2662 events in whites) and stroke (523 events in blacks and 1660 events in whites) were calculated using pooled Mantel-Haenszel estimates with continuity correction factors. Pooling results across studies using fixed-effects inverse-variance-weighted models, PCSK9 LOF variants were associated with 35 mg/dL (95% confidence interval [CI], 32-39) lower LDL-C in blacks and 13 mg/dL (95% CI, 11-16) lower LDL-C in whites. PCSK9 LOF variants were associated with a pooled odds ratio for coronary heart disease of 0.51 (95% CI, 0.28-0.92) in blacks and 0.82 (95% CI, 0.63-1.06) in whites. PCSK9 LOF variants were not associated with incident stroke (odds ratio, 0.84; 95% CI, 0.48-1.47 in blacks and odds ratio, 1.06; 95% CI, 0.80-1.41 in whites). Conclusions - PCSK9 LOF variants were associated with lower LDL-C and coronary heart disease incidence. PCSK9 LOF variants were not associated with stroke risk

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Fertilizer stimulates growth and mortality in a young Populus-Betula stand: 10-year results

    No full text
    corecore