63 research outputs found

    Lee Silverman voice treatment (LSVT) mitigates voice difficulties in mild Parkinson's disease

    Get PDF
    Background: Parkinson's disease (PD) is a progressive neurological disorder and many PD patients experience some type of voice and speech disorders during the course of illness. In this study, the aim was to investigate the effect of Lee Silverman voice treatment (LSVT) on improving voice difficulties in patients with mild PD using voice handicap index (VHI). Methods: This interventional study was conducted on 23 PD patients who were randomly divided into 2 groups: a treatment group (PD-T) (n=13) and a no-treatment group (PD-NT) (n=10). Neurologically healthy control (NNC) group consisted of 13 healthy participants who did not suffer from voice and speech problems and were matched with PD group by age (50-65 years), sex, and education. VHI questionnaire was completed a day before the start of LSVT and a day after the treatment fulfillment for the PD-T group; the same time spots were applied for the PD-NT and NNC groups. Statistical analyses were performed using SPSS Statistics 22.0 and significance level was set at 0.05. The multivariate analysis of variance and repeated measure analysis of variance were used for data analysis. Results: PD groups showed a significant weakness in VHI scores before treatment compared to NNC group (p < 0.001). The mean of VHI scores for PD-T, PD-NT, and NNC groups before treatment was 44.31±11.23, 43.54±6.10, and 8.15±4.27, respectively. LSVT was successful in improving VHI scores in PD-T group (17.23±5.35, p < 0.001). However, no improvement was observed in PD-NT group (44.00±5.88). Conclusion: Improvement in VHI score could be the result of ameliorated self-monitoring and self-regulation created by LSVT. © Iran University of Medical Sciences

    Working memory training in post-stroke aphasia: Near and far transfer effects

    Get PDF
    Purpose: Individuals with aphasia (IWA) show various impairments in speech, language, and cognitive functions. Working memory (WM), a cognitive system that functions to hold and manipulate information in support of complex, goal-directed behaviors, is one of the impaired cognitive domains in aphasia. The present study intended to examine the effects of a WM training program on both memory and language performance in IWA. Method: This quasi-experimental study with an active control group was performed on 25 people with mild or moderate Broca's aphasia aged 29�61 years resulting from left hemisphere damage following ischemic stroke. Participants were assigned into two groups, including a training group (n = 13) and a control group (n = 12). The treatment and control groups received WM training and routine speech therapy, respectively. Two separate lists of WM tests, including one list for both pre-training assessment and training program and a second list for the post-training assessment, were used in this study. Results: The treatment group showed significant improvements in both trained and non-trained WM tasks (near transfer effect) and language performance (far transfer effect) compared to the control group. Conclusion: Given the good generalizability of the WM training program on both WM and language performance, WM training is suggested as part of the rehabilitation program in aphasia. © 2020 Elsevier Inc

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    miR451 and AMPK Mutual Antagonism in Glioma Cell Migration and Proliferation: A Mathematical Model

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and the most aggressive type of brain cancer; the median survival time from the time of diagnosis is approximately one year. GBM is characterized by the hallmarks of rapid proliferation and aggressive invasion. miR-451 is known to play a key role in glioblastoma by modulating the balance of active proliferation and invasion in response to metabolic stress in the microenvironment. The present paper develops a mathematical model of GBM evolution which focuses on the relative balance of growth and invasion. In the present work we represent the miR-451/AMPK pathway by a simple model and show how the effects of glucose on cells need to be “refined” by taking into account the recent history of glucose variations. The simulations show how variations in glucose significantly affect the level of miR-451 and, in turn, cell migration. The model predicts that oscillations in the levels of glucose increase the growth of the primary tumor. The model also suggests that drugs which upregulate miR-451, or block other components of the CAB39/AMPK pathway, will slow down glioma cell migration. The model provides an explanation for the growth-invasion cycling patterns of glioma cells in response to high/low glucose uptake in microenvironment in vitro, and suggests new targets for drugs, associated with miR-451 upregulation

    Measuring, in solution, multiple-fluorophore labeling by combining Fluorescence Correlation Spectroscopy and photobleaching

    Get PDF
    Determining the number of fluorescent entities that are coupled to a given molecule (DNA, protein, etc.) is a key point of numerous biological studies, especially those based on a single molecule approach. Reliable methods are important, in this context, not only to characterize the labeling process, but also to quantify interactions, for instance within molecular complexes. We combined Fluorescence Correlation Spectroscopy (FCS) and photobleaching experiments to measure the effective number of molecules and the molecular brightness as a function of the total fluorescence count rate on solutions of cDNA (containing a few percent of C bases labeled with Alexa Fluor 647). Here, photobleaching is used as a control parameter to vary the experimental outputs (brightness and number of molecules). Assuming a Poissonian distribution of the number of fluorescent labels per cDNA, the FCS-photobleaching data could be easily fit to yield the mean number of fluorescent labels per cDNA strand (@ 2). This number could not be determined solely on the basis of the cDNA brightness, because of both the statistical distribution of the number of fluorescent labels and their unknown brightness when incorporated in cDNA. The statistical distribution of the number of fluorophores labeling cDNA was confirmed by analyzing the photon count distribution (with the cumulant method), which showed clearly that the brightness of cDNA strands varies from one molecule to the other.Comment: 38 pages (avec les figures

    Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer

    Get PDF
    The prognosis of colon cancer (CC) is dictated by tumor-infiltrating lymphocytes, including follicular helper T (TFH) cells and the efficacy of chemotherapy-induced immune responses. It remains unclear whether gut microbes contribute to the elicitation of TFH cell-driven responses. Here, we show that the ileal microbiota dictates tolerogenic versus immunogenic cell death of ileal intestinal epithelial cells (IECs) and the accumulation of TFH cells in patients with CC and mice. Suppression of IEC apoptosis led to compromised chemotherapy-induced immunosurveillance against CC in mice. Protective immune responses against CC were associated with residence of Bacteroides fragilis and Erysipelotrichaceae in the ileum. In the presence of these commensals, apoptotic ileal IECs elicited PD-1+ TFH cells in an interleukin-1R1- and interleukin-12-dependent manner. The ileal microbiome governed the efficacy of chemotherapy and PD-1 blockade in CC independently of microsatellite instability. These findings demonstrate that immunogenic ileal apoptosis contributes to the prognosis of chemotherapy-treated CC

    Differential Requirements for Clathrin-dependent Endocytosis at Sites of Cell–Substrate Adhesion

    Get PDF
    Little is known about the influences of cell–substrate attachment in clathrin-mediated endocytosis. We find that cell–substrate adhesion reduces the rate of endocytosis. In addition, we demonstrate that actin assembly is differentially required for efficient endocytosis, with a stronger requirement for actin dynamics at sites of adhesion
    corecore