74 research outputs found

    CASTOR detector: model, objectives and simulated performance

    Get PDF
    We present a phenomenological model describing the formation and evolution of a Centauro fireball in the baryon-rich region in nucleus-nucleus interactions in the upper atmosphere and at the LHC. The small particle multiplicity and imbalance of electromagnetic and hadronic content characterizing a Centauro event and also the strongly penetrating particles (assumed to be strangelets) frequently accompanying them can be naturally explained. We describe the CASTOR calorimeter, a subdetector of the ALICE experiment dedicated to the search for Centauro in the very forward, baryon-rich region of central Pb+Pb collisions at the LHC. The basic characteristics and simulated performance of the calorimeter are presented

    CASTOR: The ALICE forward detector for identification of Centauros and Strangelets in Nucleus-Nucleus Collisions at the LHC

    Full text link
    The physics motivation for a very forward detector for the ALICE heavy ion experiment at the CERN LHC is discussed. A phenomenological model describing the formation and decay of a Centauro fireball in nucleus-nucleus collisions is presented. The CASTOR detector which is aimed to measure the hadronic and photonic content of an interaction and to identify deeply penetrating objects in the very forward, baryon-rich phase space 5.6 < eta < 7.2 in an event-by-event mode is described. Results of simulations of the expected response of the calorimeter, and in particular to the passage of strangelets, are presented.Comment: Presented at XXVIII Int. Symp. on Multiparticle Dynamics, Delphi, 6-11 Sept. 1998. 9 pages, 11 figure

    Pion emission from the T2K replica target: method, results and application

    Get PDF
    The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.Comment: updated version as published by NIM

    Measurements of Ξ(1530)0{\Xi \left( 1530\right) ^{0}} and Ξ(1530)0{\overline{\Xi }\left( 1530\right) ^{0}} production in proton–proton interactions at sNN\sqrt{s_{NN}} = 17.3  = 17.3  GeV \text{ GeV } in the NA61/SHINE experiment

    Get PDF
    Double-differential yields of Ξ(1530)0\Xi\left(1530\right)^{0} and Ξ(1530)0\overline{\Xi}\left(1530\right)^{0} resonances produced in \pp interactions were measured at a laboratory beam momentum of 158~\GeVc. This measurement is the first of its kind in \pp interactions below LHC energies. It was performed at the CERN SPS by the \NASixtyOne collaboration. Double-differential distributions in rapidity and transverse momentum were obtained from a sample of 26\cdot106^6 inelastic events. The spectra are extrapolated to full phase space resulting in mean multiplicity of Ξ(1530)0\Xi\left(1530\right)^{0} (6.73 ±\pm 0.25 ±\pm 0.67)×104\times10^{-4} and Ξ(1530)0\overline{\Xi}\left(1530\right)^{0} (2.71 ±\pm 0.18 ±\pm 0.18)×104\times10^{-4}. The rapidity and transverse momentum spectra and mean multiplicities were compared to predictions of string-hadronic and statistical model calculations

    Measurements of Ξ{\Xi }{^-} and Ξ+\overline{\Xi }{^+} production in proton–proton interactions at sNN\sqrt{s_{NN}}=17.3 GeV = 17.3 GeV in the NA61/SHINE experiment

    Get PDF
    International audienceThe production of Ξ(1321)\Xi (1321)^{-} and Ξ(1321)+\overline{\Xi }(1321)^{+} hyperons in inelastic p+p interactions is studied in a fixed target experiment at a beam momentum of 158 GeV ⁣/ ⁣c\hbox {Ge}\hbox {V}\!/\!c. Double differential distributions in rapidity y{y} and transverse momentum pTp_{T} are obtained from a sample of 33M inelastic events. They allow to extrapolate the spectra to full phase space and to determine the mean multiplicity of both Ξ{\Xi }{^-} and Ξ+\overline{\Xi }{^+} . The rapidity and transverse momentum spectra are compared to transport model predictions. The Ξ{\Xi }{^-} mean multiplicity in inelastic p+p interactions at 158 GeV ⁣/ ⁣c\hbox {Ge}\hbox {V}\!/\!c is used to quantify the strangeness enhancement in A+A collisions at the same centre-of-mass energy per nucleon pair

    Lévy HBT results at Na61/SHINE

    Get PDF

    Search for the QCD critical point at SPS energies

    Get PDF
    Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN Super Proton Synchrotron (SPS). We present average transverse momentum and multiplicity fluctuations, as well as baryon and anti-baryon transverse mass spectra which are expected to be sensitive to effects of the critical point. The future CP search strategy of the NA61/SHINE experiment at the SPS is also discussed.Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN Super Proton Synchrotron (SPS). We present average transverse momentum and multiplicity fluctuations, as well as baryon and anti-baryon transverse mass spectra which are expected to be sensitive to effects of the critical point. The future CP search strategy of the NA61/SHINE experiment at the SPS is also discussed

    论创业投资中的风险控制

    Get PDF
    创业投资是资本市场培育高新技术产业的一种创新的制度安排,有别于一般的投资活动。由于被投资企业的不确定性、交易中信息的高度不对称及投资参与方以外的因素,使得创业投资在获得高收益回报的同时,要承担比一般投资活动大得多的风险,高风险是其核心特征。对风险的有效控制成为创业投资成功获得预期收益的关键。在我国目前这种环境下,由于经济体制和市场机制的缺陷,创业投资蕴含的风险更大,更有必要强调风险控制。全文共分三章,主要内容如下: 第一章比较创业投资与一般投资的主要区别,阐明创业投资风险的特殊性和风险控制的重点。 第二章这是文章的重点,针对创业投资的三个风险来源:被投资企业的不确定性、交易中信息的高度不对...学位:经济学硕士院系专业:经济学院经济系_政治经济学学号:19980900

    CASTOR: Centauro and strange object research in nucleus-nucleus collisions at the LHC

    No full text
    We present a phenomenological model which describes the formation of a Centauro fireball in the baryon-rich projectile fragmentation region in nucleus-nucleus interactions in the upper atmosphere and at the LHC, and its decay to non-strange baryons and Strangelets. Strangelets are assimilated to the &quot;strongly penetrating component&quot; frequently observed accompanying hadron-rich cosmic ray events. We describe the CASTOR subdetector for the ALICE experiment at the LHC. CASTOR will probe, in an event-by-event mode, the very forward, baryon-rich phase space 5.6 ≤ η ≤ 7.2 in 5.5 × A TeV central Pb + Pb collisions. It will look for events with pronounced imbalance between hadronic and photonic content and for deeply penetrating objects. We present results of simulations for the response of the CASTOR calorimeter to the passage of Strangelets. © 2001 Elsevier Science B.V
    corecore