3,872 research outputs found

    How to Evaluate NCAA Success in Attaining its Stated Mission. Implications for Athletes’ Rights and Social Justice

    Get PDF
    Most major organizations have mission statements that define their purpose or reason for existing. A mission statement is meaningful only if it acts as a unifying force for guiding strategic decision making and achieving long term goals. Well defined mission statements also serve as a yardstick for measuring organizational effectiveness in attaining stated goals. With this is mind, the purpose of this paper is to discuss methods that can be used to determine whether the NCAA is achieving its educational goals or merely using its mission statement as support for an “unrelated business.” Differences between Federal Graduation Rates, Graduation Success Rates, and the Academic Progress Rate are examined. Implications of the NCAA’s statement of purpose for social justice and athletes’ rights are also discussed

    Unfinished Business: a Review of the Implementation of the Provisions of United Nations General Assembly Resolutions 61/105 and 64/72, Related to the Management of Bottom Fisheries in Areas Beyond National Jurisdiction

    Get PDF
    In 2006 the General Assembly adopted resolution 61/105, based on a compromise proposal offered by deep-sea fishing nations, which committed States and regional fisheries management organisations [RFMOs] to take specific measures to protect vulnerable marine ecosystems [VMEs] from the adverse impacts of bottom fisheries in the high seas and to ensure the longterm sustainability of deep-sea fish stocks. These measures included conducting impact assessments to determine whether significant adverse impacts[SAIs] to VMEs would occur, managing fisheries to prevent SAIs on VMEs, and closing areas of the high seas to bottom fishing where VMEs are known or likely to occur, unless regulations are in place to prevent SAIs and to manage sustainably deep-sea fish stocks. Based on a review in 2009 of the actions taken by States and RFMOS, the UNGA adoptedresolution 64/72 that reaffirmed resolution 61/105 and strengthened the call for action through committing States, inter alia, to ensure that vessels do not engage in bottom fishing until impact assessments have been carried out and to not authorise bottom fishing activities until the measures in resolutions 64/72 and 61/105 have been adopted andimplemented

    Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability

    No full text
    The assessment of corticospinal excitability by means of transcranial magnetic stimulation-induced motor evoked potentials is an established diagnostic tool in neurophysiology and a widely used procedure in fundamental brain research. However, concern about low reliability of these measures has grown recently. One possible cause of high variability of MEPs under identical acquisition conditions could be the influence of oscillatory neuronal activity on corticospinal excitability. Based on research showing that transcranial alternating current stimulation can entrain neuronal oscillations we here test whether alpha or beta frequency tACS can influence corticospinal excitability in a phase-dependent manner. We applied tACS at individually calibrated alpha- and beta-band oscillation frequencies, or we applied sham tACS. Simultaneous single TMS pulses time locked to eight equidistant phases of the ongoing tACS signal evoked MEPs. To evaluate offline effects of stimulation frequency, MEP amplitudes were measured before and after tACS. To evaluate whether tACS influences MEP amplitude, we fitted one-cycle sinusoids to the average MEPs elicited at the different phase conditions of each tACS frequency. We found no frequency-specific offline effects of tACS. However, beta-frequency tACS modulation of MEPs was phase-dependent. Post hoc analyses suggested that this effect was specific to participants with low (<19 Hz) intrinsic beta frequency. In conclusion, by showing that beta tACS influences MEP amplitude in a phase-dependent manner, our results support a potential role attributed to neuronal oscillations in regulating corticospinal excitability. Moreover, our findings may be useful for the development of TMS protocols that improve the reliability of MEPs as a meaningful tool for research applications or for clinical monitoring and diagnosis. (C) 2018 Elsevier Ltd. All rights reserved

    BioBot: Innovative Offloading of Astronauts for More Effective Exploration

    Get PDF
    The BioBot concept consists of a robotic rover which is capable of traversing the same terrain as a spacesuited human. It carries the primary life support system for the astronaut, including consumables, atmosphere revitalization systems (e.g., CO2 scrubbing, humidity and temperature management, ventilation fan), power system (e.g., battery, power management and distribution),and thermal control system (e.g., water sublimator, cooling water pump), along with umbilical lines to connect to the supported astronaut. Although not technically part of life support, it would be logical for the BioBot to also provide long-range communications, video monitoring, tool and sample transport, and other functions to enable and enhance EVA productivity in planetary surface exploration.The design reference scenario for this concept is that astronauts involved in future lunar or Mars exploration will be on the surface for weeks or months rather than days, and will be involved in regular EVA operations. It is not unreasonable to think of geologists spending several days inEVA exploration each week over a prolonged mission duration, with far more ambitious operational objectives than were typical of Apollo. In this scenario, each astronaut will be accompanied by a "BioBot", which will transport their life support system and consumables, an extended umbilical and umbilical reel, and robotic systems capable of controlling the position and motion of the umbilical. The astronaut will be connected to the robot via the umbilical, carrying only a small emergency open-loop life support system similar to those contained in every PLSS. The robotic mobility base will be designed to be capable of traveling anywhere the astronaut can walk, and will also be useful as a transport for the EVA tools, science instrumentation, and collected samples. In addition, the BioBot can potentially carry the astronaut on traverses as well. Such a system will also be a significant enhancement to public engagement in these future exploration missions, as the robotic vehicles can also support high-resolution cameras and high bandwidth communications gear to providehigh-definition video coverage of each crew throughout each EVA sortie

    The Quantum Mellin transform

    Get PDF
    We uncover a new type of unitary operation for quantum mechanics on the half-line which yields a transformation to ``Hyperbolic phase space''. We show that this new unitary change of basis from the position x on the half line to the Hyperbolic momentum pηp_\eta, transforms the wavefunction via a Mellin transform on to the critial line s=1/2ipηs=1/2-ip_\eta. We utilise this new transform to find quantum wavefunctions whose Hyperbolic momentum representation approximate a class of higher transcendental functions, and in particular, approximate the Riemann Zeta function. We finally give possible physical realisations to perform an indirect measurement of the Hyperbolic momentum of a quantum system on the half-line.Comment: 23 pages, 6 Figure

    Strong-coupling effects in the relaxation dynamics of ultracold neutral plasmas

    Full text link
    We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolution of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells

    Crystallization and melting of bacteria colonies and Brownian Bugs

    Get PDF
    Motivated by the existence of remarkably ordered cluster arrays of bacteria colonies growing in Petri dishes and related problems, we study the spontaneous emergence of clustering and patterns in a simple nonequilibrium system: the individual-based interacting Brownian bug model. We map this discrete model into a continuous Langevin equation which is the starting point for our extensive numerical analyses. For the two-dimensional case we report on the spontaneous generation of localized clusters of activity as well as a melting/freezing transition from a disordered or isotropic phase to an ordered one characterized by hexagonal patterns. We study in detail the analogies and differences with the well-established Kosterlitz-Thouless-Halperin-Nelson-Young theory of equilibrium melting, as well as with another competing theory. For that, we study translational and orientational correlations and perform a careful defect analysis. We find a non standard one-stage, defect-mediated, transition whose nature is only partially elucidated.Comment: 13 Figures. 14 pages. Submitted to Phys. Rev.

    The reaction γpπγp\gamma p \to \pi^\circ \gamma^\prime p and the magnetic dipole moment of the Δ+(1232)\Delta^+(1232) resonance

    Full text link
    The reaction γpπγp\gamma p \to \pi^\circ \gamma^\prime p has been measured with the TAPS calorimeter at the Mainz Microtron accelerator facility MAMI for energies between s\sqrt{s} = 1221--1331 MeV. Cross sections differential in angle and energy have been determined for all particles in the final state in three bins of the excitation energy. This reaction channel provides access to the magnetic dipole moment of the Δ+(1232)\Delta^{+}(1232) resonance and, for the first time, a value of μΔ+=(2.71.3+1.0(stat.)±1.5(syst.)±3(theo.))μN\mu_{\Delta^+} = (2.7_{-1.3}^{+1.0}(stat.) \pm 1.5 (syst.) \pm 3(theo.)) \mu_N has been extracted

    On the evaluation of some three-body variational integrals

    Get PDF
    Stable recursive relations are presented for the numerical computation of the integrals dr1dr2r1l1r2m1r12n1exp{αr1βr2γr12}\int d{\bf r}_1 d{\bf r}_2 r_1^{l-1} r_2^{m-1} r_{12}^{n-1} \exp{\{-\alpha r_1 -\beta r_2 -\gamma r_{12}\}} (ll, mm and nn integer, α\alpha, β\beta and γ\gamma real) when the indices ll, mm or nn are negative. Useful formulas are given for particular values of the parameters α\alpha, β\beta and γ\gamma.Comment: 12 pages, 1 figure (PS) and 3 tables. Old figures 2 and 3 replaced by Tables I and III. A further table added. Paper enlarged giving some tips on the convergence of quadrature
    corecore