154 research outputs found

    A Metabolomic Perspective on Coeliac Disease

    Get PDF
    Metabolomics is an “omic” science that is now emerging with the purpose of elaborating a comprehensive analysis of the metabolome, which is the complete set of metabolites (i.e., small molecules intermediates) in an organism, tissue, cell, or biofluid. In the past decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and offers promises as a clinical tool. A metabolomics investigation of coeliac disease (CD) revealed that a metabolic fingerprint for CD can be defined, which accounts for three different but complementary components: malabsorption, energy metabolism, and alterations in gut microflora and/or intestinal permeability. In this review, we will discuss the major advancements in metabolomics of CD, in particular with respect to the role of gut microbiome and energy metabolis

    The association between breastmilk oligosaccharides and faecal microbiota in healthy breastfed infants at two, six, and twelve weeks of age

    Get PDF
    Several factors affect gut microbiota development in early life, among which breastfeeding plays a key role. We followed 24 mother-infant pairs to investigate the associations between concentrations of selected human milk oligosaccharides (HMOs) in breastmilk, infant faeces, and the faecal microbiota composition in healthy, breastfed infants at two, six and 12 weeks of age. Lactation duration had a significant effect on breastmilk HMO content, which decreased with time, except for 3-fucosyllactose (3FL) and Lacto-N-fucopentaose III (LNFP III). We confirmed that microbiota composition was strongly influenced by infant age and was associated with mode of delivery and breastmilk LNFP III concentration at two weeks, with infant sex, delivery mode, and concentrations of 3′sialyllactose (3′SL) in milk at six weeks, and infant sex and Lacto-N-hexaose (LNH) in milk at 12 weeks of age. Correlations between levels of individual breastmilk HMOs and relative abundance of OTUs found in infant faeces, including the most predominant Bifidobacterium OTUs, were weak and varied with age. The faecal concentration of HMOs decreased with age and were strongly and negatively correlated with relative abundance of OTUs within genera Bifidobacterium, Parabacteroides, Escherichia-Shigella, Bacteroides, Actinomyces, Veillonella, Lachnospiraceae Incertae Sedis, and Erysipelotrichaceae Incertae Sedis, indicating the likely importance of these taxa for HMO metabolism in vivo.</p

    Necrotizing soft tissue infections - a multicentre, prospective observational study (INFECT) : Protocol and statistical analysis plan

    Get PDF
    Background: The INFECT project aims to advance our understanding of the pathophysiological mechanisms in necrotizing soft tissue infections (NSTIs). The INFECT observational study is part of the INFECT project with the aim of studying the clinical profile of patients with NSTIs and correlating these to patient-important outcomes. With this protocol and statistical analysis plan we describe the methods used to obtain data and the details of the planned analyses. Methods: The INFECT study is a multicentre, prospective observational cohort study. Patients with NSTIs are enrolled in five Scandinavian hospitals, which are all referral centres for NSTIs. The primary outcomes are the descriptive variables of the patients. Secondary outcomes include identification of factors associated with 90-day mortality and amputation; associations between affected body part, maximum skin defect and Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC) score and 90-day mortality; 90-day mortality in patients with and without acute kidney injury (AKI) and LRINEC score of six and above or below six; and association between affected body part at arrival and microbiological findings. Exploratory outcomes include univariate analyses of baseline characteristics associations with 90-day mortality. The statistical analyses will be conducted in accordance with the predefined statistical analysis plan. Conclusion: Necrotizing soft tissue infections result in severe morbidity and mortality. The INFECT study will be the largest prospective study in patients with NSTIs to date and will provide important data for clinicians, researchers and policy makers on the characteristics and outcomes of these patients.</p

    Functional Characteristics and Coping Strategies among Rugby Athletes: A Cluster Analysis Approach

    Get PDF
    The developing domain of mental health in sports has gained much interest, acknowledging its pivotal role in athlete performance and well-being. The aim of this research is to provide a quantitative description concerning the levels of mental health, physical activity, cognitive fusion, cognitive flexibility, and coping strategies that characterize rugby athletes by using a data-driven approach. A total of 92 rugby athletes took part in this study and filled out a set of self-administered questionnaires. A correlational analysis showed that general well-being was positively associated with years spent playing rugby (r = 0.23) and coping mechanisms (r = 0.29). Athletes’ well-being was also negatively correlated with cognitive inflexibility (r = −0.41) and cognitive fusion (r = −0.39). A k-means cluster analysis identified two unique groups: group 1, characterized by higher levels of psychological well-being, lower levels of physical activity, greater cognitive flexibility, improved coping techniques, and reduced cognitive fusion, and group 2, which exhibits opposite characteristics. The discrepancies observed in psychological characteristics such as coping strategies, cognitive fusion, and cognitive inflexibility highlight their potential impact on the general health of rugby players. To comprehend the complex interplay between psychological and physical elements in rugby athletes, long-term studies with larger samples are crucial

    Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions

    Full text link
    Improvements in sequencing technologies and reduced experimental costs have resulted in a vast number of studies generating high-throughput data. Although the number of methods to analyze these "omics" data has also increased, computational complexity and lack of documentation hinder researchers from analyzing their high-throughput data to its true potential. In this chapter we detail our data-driven, transkingdom network (TransNet) analysis protocol to integrate and interrogate multi-omics data. This systems biology approach has allowed us to successfully identify important causal relationships between different taxonomic kingdoms (e.g. mammals and microbes) using diverse types of data

    Group‑wise ANOVA simultaneous component analysis for designed omics experiments

    Get PDF
    Modern omics experiments pertain not only to the measurement of many variables but also follow complex experimental designs where many factors are manipulated at the same time. This data can be conveniently analyzed using multivariate tools like ANOVA-simultaneous component analysis (ASCA) which allows interpretation of the variation induced by the different factors in a principal component analysis fashion. However, while in general only a subset of the measured variables may be related to the problem studied, all variables contribute to the final model and this may hamper interpretatio

    Genetic dynamics in untreated CLL patients with either stable or progressive disease: A longitudinal study

    Get PDF
    Clonal evolution of chronic lymphocytic leukemia (CLL) often follows chemotherapy and is associated with adverse outcome, but also occurs in untreated patients, in which case its predictive role is debated. We investigated whether the selection and expansion of CLL clone(s) precede an aggressive disease shift. We found that clonal evolution occurs in all CLL patients, irrespective of the clinical outcome, but is faster during disease progression. In particular, changes in the frequency of nucleotide variants (NVs) in specific CLL-related genes may represent an indicator of poor clinical outcome

    Diabetes and necrotizing soft tissue infections—A prospective observational cohort study : Statistical analysis plan

    Get PDF
    Background: Necrotizing soft tissue infections (NSTIs) are rare but carry a high morbidity and mortality. The multicenter INFECT project aims to improve the understanding of the pathogenesis, clinical characteristics, diagnosis, and prognosis of NSTIs. This article describes the study outline and statistical analyses that will be used. Methods: Within the framework of INFECT project, patients with NSTI at 5 Scandinavian hospitals are enrolled in a prospective observational cohort study. The goal is to evaluate outcome and characteristics for patients with NSTI and diabetes compared to patients with NSTI without diabetes. The primary outcome is mortality at 90 days after inclusion. Secondary outcomes include days alive and out of ICU and hospital, SAPS II, SOFA score, infectious etiology, amputation, affected body area, and renal replacement therapy. Comparison in mortality between patients with diabetes type 1 and 2 as well as between insulin-treated and non-insulin–treated diabetes patients will be made. Clinical data for diabetic patients with NSTI will be reported. Conclusion: The study will provide important data on patients with NSTI and diabetes.</p

    Analysis of host-pathogen gene association networks reveals patient-specific response to streptococcal and polymicrobial necrotising soft tissue infections

    Get PDF
    Background: Necrotising soft tissue infections (NSTIs) are rapidly progressing bacterial infections usually caused by either several pathogens in unison (polymicrobial infections) or Streptococcus pyogenes (mono-microbial infection). These infections are rare and are associated with high mortality rates. However, the underlying pathogenic mechanisms in this heterogeneous group remain elusive. Methods: In this study, we built interactomes at both the population and individual levels consisting of host-pathogen interactions inferred from dual RNA-Seq gene transcriptomic profiles of the biopsies from NSTI patients. Results: NSTI type-specific responses in the host were uncovered. The S. pyogenes mono-microbial subnetwork was enriched with host genes annotated with involved in cytokine production and regulation of response to stress. The polymicrobial network consisted of several significant associations between different species (S. pyogenes, Porphyromonas asaccharolytica and Escherichia coli) and host genes. The host genes associated with S. pyogenes in this subnetwork were characterised by cellular response to cytokines. We further found several virulence factors including hyaluronan synthase, Sic1, Isp, SagF, SagG, ScfAB-operon, Fba and genes upstream and downstream of EndoS along with bacterial housekeeping genes interacting with the human stress and immune response in various subnetworks between host and pathogen. Conclusions: At the population level, we found aetiology-dependent responses showing the potential modes of entry and immune evasion strategies employed by S. pyogenes, congruent with general cellular processes such as differentiation and proliferation. After stratifying the patients based on the subject-specific networks to study the patient-specific response, we observed different patient groups with different collagens, cytoskeleton and actin monomers in association with virulence factors, immunogenic proteins and housekeeping genes which we utilised to postulate differing modes of entry and immune evasion for different bacteria in relationship to the patients’ phenotype.publishedVersio
    • …
    corecore