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Metabolomics is an “omic” science that is now emerging with the purpose of elaborating a comprehensive analysis of the
metabolome, which is the complete set of metabolites (i.e., small molecules intermediates) in an organism, tissue, cell, or biofluid.
In the past decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and
offers promises as a clinical tool. A metabolomics investigation of coeliac disease (CD) revealed that a metabolic fingerprint for
CD can be defined, which accounts for three different but complementary components: malabsorption, energy metabolism, and
alterations in gut microflora and/or intestinal permeability. In this review, we will discuss the major advancements in metabolomics
of CD, in particular with respect to the role of gut microbiome and energy metabolism.

1. Introduction

Coeliac disease (CD, MIM 212750), first described in 1887,
is a common complex chronic immune-mediated disorder
with a known (gluten) environmental trigger. Recent surveys
indicate that it may affect 1 in 105 subjects in the United States
[1], 1in 67 Finnish school children [2], and 1 in 230 in Italian
school age children [3], with seroprevalence of about 1% in
subjects of white European origin [4, 5].

Coeliac disease has a strong genetic component with
multiple contributing genes: the most important and best
characterized genetic risk factors are the HLA class II genes
DQ2 and/or DQ8 which are located on chromosome 6p21.
More than 97% of patients have at least one of the two
genes: most patients (>90%) carry the DQ2 gene, while the
rest expresses the DQ8 gene. HLA-DQ?2 is encoded by the

HLA-DQA1"05 allele (« chain) and the HLA-DQB1*02 (3
chain) [6, 7]. Common to many other autoimmune disorders,
the two alleles are often present in the cis conformation on the
DR3 haplotype [8]; HLA-DQ2 and HLA-DQS8 are necessary
but not sufficient for the development of CD.

Genome wide association studies indicated 39 non-HLA
loci to be predisposing to CD [9-11]. Altogether, the nonHLA
loci explain only 5% of the risk for CD [6], while the HLA loci
account for 35% of the risk [7].

Several of these nonHLA CD susceptibility genes are
associated with other diseases/traits [6] such as type 1 diabetes
[12,13], rheumatoid arthritis [14], and systemic lupus erythe-
matosus [15] indicating a possibly shared genetic background
with other diseases [7].

The environmental trigger of coeliac disease is gluten, a
protein complex formed by gliadin and glutenin, which is
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FIGURE 1: Relationships between the omics sciences.

found in wheat and related grain species like barley and rye
and also in processed food where it is used to enhance food
texture and as a stabilizing agent.

The active disease component is gliadin [16] with the «-,
B-, y-, and w-fractions. These fractions are rich in proline
and glutamine and resistant to enzymatic digestion; large
proline/glutamine-rich peptides accumulate in the small-
est intestine, triggering an abnormal innate and adaptive
immune response in genetically predisposed subjects.

The response of the adaptive immune system is due to the
gliadin-reactive CD4+ T cells; HLA-DQ molecules bind to
these peptides which are deamidated by the intestinal brush
border enzyme tissue transglutaminase; these complexes
interact with the T-cell receptor on T cells leading to T-
cell activation with subsequent release of proinflammatory
cytokines and the production by B-cells of specific antibodies
(anti-tissue transglutaminase and endomysial antibodies) [17,
18].

The role of the innate immune systems in CD is less clear
[7]. Increased expression of interleukin-15 has been observed
[19]; enhanced intestinal permeability has been also observed
[20], induced by zonulin [21], whose release is mediated by
gluten activated CXCR-3 [22, 23]. Loss of functionality in
the intestinal barrier permits the passage of immunoreactive
peptides and other antigens from the gut lumen to the lamina
propria, with subsequent triggering of the innate immune
system.

2. Metabolomics

The advent of high-throughput techniques led to a rapid
expansion of data sets originated from the analysis of gut
microbiota and currently several ongoing projects are aimed
at the study and definition of the microbiome [24, 25]. In this
framework, metabolomics is playing a crucial role.

Since the systematic genome sequencing of the first free-
living microbe [26], we have seen the rising of genome-
wide expression profiling methods, aimed to understand
complex biological systems on a large scale [27]. The fast

development of genomics, transcriptomics, proteomics, and
the other omics disciplines is the consequence of this new
scientific paradigm.

In this framework, metabolomics has already proved in
the past decade to be a useful complement for the character-
ization of several physiological and pathological conditions
and offers promises as a clinical tool [28]. Metabolomics is
based on the analysis of the measured dynamic changes of
a living organism in response to genetic modifications or
physiological stimuli such as nutrients, drugs treatment, or
toxic insults [29].

The metabolome, the complete collection of all metabo-
lites contained in a biological specimen, can be considered
the downstream end-product of the complex interaction of
genome, transcriptome, proteome, and the environment: it
can be regarded as a cascade linking genome to the phenotype
[30] (Figure 1). The metabolome, consisting of low-molecular
weight chemical intermediates [31], can be considered as an
amplified version of gene expression. While changes in gene
expression levels (and thus proteins) will have only small
effects on metabolic fluxes, they must have large effects on
metabolic pathways (and thus metabolites concentrations)
[27]. From this point of view, the metabolite space represents
the optimal level at which changes in biological systems are
analyzed with optimal sensitivity [32] under conditions of
negligible effects on the global phenotype [33].

Metabolomics does not rely on the measurement of a
single metabolite but considers the spectrum of (possibly)
all metabolites as a whole, taking a holistic approach; this
offers evident advantages with respect to a targeted search
of metabolites; indeed, no assumption is required on the
identity of the metabolites that are or may be relevant for the
biological phenomenon under investigation.

The main analytical techniques employed in meta-
bolomics (Boxes 1 and 2) are nuclear magnetic resonance
spectroscopy (NMR) and mass spectrometry (MS). Both MS
and NMR methods provide information on the relative and
absolute concentrations of different classes of metabolites
in a single measurement (see Box 3) and can be also used
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FIGURE 2: Examples of NMR profiles of (a) serum, (b) urine, (c)
saliva, and (d) faecal extract.

to determine metabolite structures providing mechanistic
insights.

The most common biological specimens used in
metabolomics are serum/plasma and/or urines, firstly,
because they can be collected with low invasiveness, and,
secondly because, as they contain thousands of metabolites,
they are rich in biological information at the systemic level;
a number of other biofluids such as saliva [34], tissue extract
[35], cerebrospinal fluid [36], bile [37], seminal fluid [38],
amniotic fluid [39], synovial fluid [40], exhaled breath
condensate [41, 42], and faecal extracts [43] can also be
studied. Figure 2 shows typical NMR spectra of four different
biofluids (Box 3).

Targeted and untargeted approaches are possible in
metabolomics, the former focusing on the analysis of a subset
of known compounds or class thereof (targeted MS and
NMR) and the latter focusing on the whole array of metabo-
lites within the detection limit of the technique employed
(untargeted MS and NMR). Using both approaches, hun-
dreds to thousands of metabolites are measured. Data
are usually analyzed following the classical metabolomics
pipeline (Box 4), and information is extracted using state-of-
the-art statistical tools (Box 5).

Metabolomics has provided significant information on a
wide range of pathologies, such as cancer [44], meningitis
[45], neurological disorders [46], cardiovascular diseases
[47], inborn errors of metabolism [48], and CD [49-51].
The first metabolomics investigation of CD revealed that a
metabolic fingerprint for coeliac disease can be defined [49],
which accounts for three different but complementary com-
ponents: malabsorption, energy metabolism, and alterations
in gut microflora and/or intestinal permeability.

In this review, we will discuss the major advancements
in metabolomics of CD with respect to the role of gut
microbiome and energy metabolism.

3. Gut Microbiota and CD

Recent studies [52-56] pointed to the possible role of
intestinal microbiota (faecal and duodenal species) in the
development of coeliac disease. A summary of the most
relevant findings in this research area is reported in Table 1
together with the associated bacteria strains involved.

Nistal et al. [57] compared the differences between
gut microorganisms in the upper small intestinal mucosa
in adults and in children. A two-time higher number of
microbial genera have been identified in adults compared to
children, although the dominant genera were very similar:
Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and
Fusobacteria. Differences in the amount of bacterial commu-
nities between adult and juvenile groups can be also directly
connected with the age of investigated subjects.

A comparison between healthy, diseased, and treated
coeliac adults showed a lower number of Streptococcus spp.
and Prevotella spp. families in untreated coeliac adults. Inter-
estingly, similar patterns were also observed in CD children,
suggesting that these bacterial populations may have been
modified by changes in the intestine environment caused by
active CD.

In the study by Nadal et al. [58], the bacterial species
present in faeces and duodenum of children with active and
treated CD were compared with a healthy control group.
The ratio of harmless Gram-positive bacteria (Lactobacillus
+ Bifidobacterium) to potentially harmful Gram-negative
(Bacteroides/Prevotella + E. coli) bacteria was significantly
lower in CD patients than in controls, while no distinction
was possible between active and inactive CD.

Sanchez et al. [59] applied denaturing gradient gel
electrophoresis (DGGE) to analyze intestinal microbiota
from biopsy specimens obtained from three groups of chil-
dren, investigating the composition of Bacteroides, Bifidobac-
terium, and Lactic acid bacteria in duodenal biopsies of
patients with active and treated coeliac disease. Dysbiosis in
Bacteroides (the most abundant intestinal bacterial group)
was observed, with a significant reduction in coeliac and
coeliac treated patients in comparison with the control group.
Moreover, it was observed that a treatment with gluten-
free diet did not restore the balance of the Bacteroides
composition. Interestingly, it was observed that the lactic acid
bacteria (Lactobacillus) and the Weissella family were more
abundant and diverse in treated coeliac and control patients
than in patients with untreated coeliac disease. The authors
suggested that some of the changes in duodenal bacterial
community could be due to the inflammatory consequences
of the active phase of the disease; nonetheless, the influence
of different dietary habits could not be discarded.

Biopsies from treated coeliac children were analyzed in
a study by di Cagno et al. [63], that also confirmed that a
gluten-free diet lasting two or more years is not able to restore
completely the microbiota. In addition, a higher diversity of
the Eubacteria community was observed in the duodenum
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TABLE 1: Most relevant findings, and associated references, for studies linking gut microbiota and CD.
References :Zglepi)ef Technique Microbiota phylum/class Relevant findings
PCR-DGGE (real-time
. polymerase chain reaction,  Firmicutes Bacteroides ~ Diversity in mucosal microbiota of celiac
E/;Isa]ckhn et al. (2013) I\I;Iil(l)co:a denaturing gradient gel Proteobacteria disease patients is associated with the
Psy electrophoresis), 165 rRNA  Actinobacteria symptoms of the disease.
sequencing
Composition of small intestinal microbiota
Nistal et al. (2012) Duodenal PCR (polymerase chain g icutes is similar between adults and children; there
[57] biopsies reaction) Proteobacteria is higher number of Streptococcus and
. Prevotella in healthy subjects.
Bacteroidetes
Actinobacteria In faeces and duodenum of CD children,
FISH (EL L Fusobacteria smaller amount of harmless bacteria
Nadal et al. (2007) Duodenal h b( . dl.lore.scentFlln situ (Lactobacillus and Bifidobacterium) and
[58] biopsy yon 1zat1((1)n), ow higher number of harmful bacteria are
cytometry detection. found (Bacteroides/Prevotella + E. coli)
compared to healthy children.
Reduced number of intestinal microbiota in
Sanchez et al. (2010) Duodenal PCR-DGGE CD children but also in treated CD children
[59] biopsy ] Bacteroidetes was noticed. Treatment with GFD does not
restore the bacteria composition.
Studies were carried out on stools of infants
with high/low risk of CD and different types
of milk feeding. High-risk infants have
Sanchez et al. (2011) Faeces PCR-DGGE higher prevalence of Bacteroides vulgatus,
[60] samples ) whereas low-risk infants have higher
population of B. uniformis, B. ovatus, and B.
plebeius considering the subgroup of either
breast-fed or formula-fed infants.
Overall microbiota composition in the
. Bacilli Bacteroides duodenal mucosa is comparable between
C6flleng etal. (2013) Dll;odenal qRT—PClZR (quglétgatlve Clostridium healthy and CD children, but studied groups
[61] 1opsy real-time ) Proteobacteria differ regarding bacteria subpopulation
profile.
Lack of microflora maturation during first 2
Sellitto et al. (2012) Faeces o Bacteroidetes years of life in infants at risk of CD.
[51] samples qPCR (quantitative PCR) Firmicutes Moreover, there was observed absence of
Bacteroidetes and abundance of Firmicutes.
Lactobacillus and Weissella are more
abundant and diverse in treated CD patients
Sanz et al. (2007) Faeces PCR-DGGE Actinobacteria and control subjects than in active CD
[54] samples ] Firmicutes individuals. Composition of lactic bacteria
and Bifidobacterium differs between celiac
children and age-matched controls.
There observed no statistical differences in
Kaufman and bacteria composition between healthy and
Rousseeuw (2009) Intestine PCR p b . CD children. Nevertheless, Haemophilus
[62] biopsies roteobacteria was more common in CD patients and
Neisseria polysaccharea in control
individuals.
Faeces Higher number of different Eubacteria
di Cagno et al. (2011)  sample, RAPD (random amplification Fubacteria classes was found in duodenum of coeliac
[63] duodenal  of polymorphic DNA) -PCR children under gluten-free diet than in

healthy children.
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TaBLE 1: Continued.

References :Zi;?: Technique Microbiota phylum/class Relevant findings
Studies regarding interaction between faecal
PBMC (peripheral blood bacteria and immune system response of
Medina et al. (2008)  Faeces mononuclear cell) Actinobacteria coeliac disease patients. It appeared that
[64] sample phenotyping and flow Gram-positive bacteria such as Lactobacillus

cytometric analyses

and Bifidobacterium may act as inhibitors of
inflammation.

of coeliac children under a gluten-free diet with respect to
healthy children. Compared to that of duodenal biopsies, the
faecal bacterial population was found to be more diverse.
PCR-DGGE faecal profiles of Lactobacillus and Bifidobac-
terium differ between treated coeliac children and healthy
controls. The ratio between Lactobacillus/Bifidobacterium
and Bacteroides/Enterobacteria was lower in coeliac children
under treatment compared to healthy children. Some of
the differences could be related to both coeliac disease and
dietary variations.

Surprisingly, a study by Ou et al. [65], based on biopsies
collected from the distal duodenum/proximal jejunum of 45
children, did not reveal significant differences between the
microbiota in the small intestine of diseased and healthy
children, although bacteria from the Haemophilus family
were more abundant in CD patients, while Neisseria polysac-
charea were more widespread in the control group. However,
at the genus level, no differences between the two groups
were observed. The authors commented that differences at
the species level could not be excluded because complete
16 S rDNA were not sequenced. Similar results, pointing
to a lack of significant differences in global composition
of duodenal microbiota between healthy controls and CD
patients, were obtained also by Cheng et al; on the other
hand, a subpopulation profile, containing eight genus-like
bacterial groups, was found to distinguish healthy controls
from CD patients [61].

The possible effect on microbiota of different types of milk
feeding in early life and the link to the risk of CD development
were investigated by Sanchez et al. [60]. The study was carried
out on stools of breast-fed infants with different genetic risk
of CD (low and high); it showed that high-risk infants had
a higher prevalence of Bacteroides vulgatus, whereas low-
risk infants had higher population of B. uniformis, B. ovatus,
and B. plebeius. In the study group of formula-fed infants, B.
ovatus and B. plebeius were increased in subjects with lower
genetic risk, while B. vulgatus had higher prevalence in those
subjects with higher genetic risk. The authors concluded
that both types of milk feeding in conjunction with HLA-
DQ genotype can influence the Bacteroides colonization,
increasing the risk of coeliac disease onset. Also, the time
of exposure to milk feeding was found to be relevant in
prompting coeliac disease development [66].

Sellitto et al. [51] reported the impact on the intestinal
tract of two different patterns of gluten introduction. A delay
in gluten exposure of at least 6 to 12 months was found to
have a positive effect on gluten tolerance: it caused a delay

in CD autoimmunity onset in infants that were genetically
susceptible to CD. Instead, the early exposure to gluten of
infants at risk of coeliac disease was found to induce an
immune response and led to a more frequent development
of CD. Moreover, a lack of gut microflora maturation during
the first 2 years of life in infants at risk of CD was also
noted. The gut metabolome of the first 6 months of infant’s
life reflects mainly the milk diet (rich in polysaccharides and
other sugars) and is very similar in all infants; once the solid
food is introduced, a shift occurs and a group of short-chain
fatty acids are found in faeces. By the end of the second year
of life, Bacteroides are the main bacteria group found in the
metabolome of healthy infants. Conversely, in infants with
a genetic risk of celiac disease, an overall lack of bacteria of
the phylum Bacteroides and abundance of Firmicutes were
observed.

Recent studies [67] suggest that the colonization of
gastrointestinal tract is very important in the development
of autoimmune disorders and food-related disease. Further-
more, possible interaction between the intestinal bacteria and
the mammalian immune system in the direct differentiation
of both pro- and anti-inflammatory T-cells population has
been suggested [68]. To clarify whether the gut microflora
present in the faeces of CD patients is involved in the
proinflammatory activity of coeliac disease, Bifidobacterium
from healthy subjects was co-incubated together with the
faecal microflora or the peripheral blood mononuclear cell
culture of coeliac subjects [64]. It appeared that certain
strains of Bifidobacterium are able to suppress and reverse
the proinflammatory effect by increasing IL-10 cytokine
production. These results may suggest the use of selected
strains of Bifidobacterium as probiotics for treatment of CD.

It has been also suggested that gluten intolerance may
be also triggered by environmental factors like viruses or
bacteria showing molecular mimicking with gluten proteins,
causing an autoimmune response that may last even after
infection [69]. Several studies pointed to infections by human
adenovirus [70], hepatitis C virus [71], rotaviruses [72], or
Campylobacter jejuni [73] that could induce allergic reactions
similar to that induced by gluten exposure, causing the onset
of CD.

4. Body Composition and Energy
Expenditure in CD Patients

Patients with the classic form of coeliac disease are always
characterized by weight loss directly connected with



malabsorption and subsequent risk of malnutrition. Often
coeliac disease results in a general lack of energy and strength
that can create abnormal conditions described as (chronic)
fatigue. Appearance of fatigue and fatigue-related problems
seems to be more frequent in nontreated coeliac patients
than in patients on a gluten-free diet [74].

Body composition, resting metabolic rate (RMR), and
substrate oxidation rates were investigated in [75, 76]. The
results showed that untreated and treated CD patients had a
lower body weight, lower levels of fat-free mass (FFM), and
lower fat mass (FM) in comparison to the healthy controls.
In [77], the analysis of body composition at the diagnosis
time and after one year of treatment with a gluten-free diet
was carried out. The analysis showed a significant increase of
body weight and FM but only a slight increase of FFM after
treatment with gluten-free diet. Additionally, RMR values
were higher in CD patients (treated and untreated) than in
controls. Moreover, untreated CD patients showed a higher
npRQ (nonprotein respiratory quotient); this may indicate
that untreated patients oxidize larger amounts of carbohy-
drate under resting metabolite conditions than treated CD
and healthy subjects.

Interestingly ghrelin, one of the hormones responsi-
ble for energy balance regulation, is also changed in CD
patients. Ghrelin is a 28-amino acid-peptide produced by the
enteroendocrine cells of the gastric mucosa and the intestine
[78]. Recent studies have shown that ghrelin is able to increase
food intake, decrease fat use, and reduce energy expenditure
[79]. While serum ghrelin concentration was increased in CD
patients, body mass was decreased [80, 81]. Lower levels of
circulating ghrelin were found in CD patients after gluten-
free treatment in comparison with CD and control subjects
[82]. These results suggest that low amounts of ghrelin in the
blood may be partially responsible for the slight increase in
body weight and FM in CD patients after treatment with a
gluten-free diet.

5. Metabolomic Signature of CD

In many cases, the diagnosis of CD is not an easy task,
mainly because CD has a variable clinical picture due to
its intertwingled genetic, immunological, and environmental
components. The presence of the HLA genetic factor, together
with a positive biopsy and serological antibodies upon gluten-
containing diet, is used to diagnose coeliac disease at any age.
In order to better understand the processes underlying the
activation and development of coeliac disease, it is important
to examine the mechanisms from the early beginning.

To date, a limited number of metabolomics studies
of coeliac disease are available, but they clearly show that
metabolic differences between healthy individuals and
coeliac patients exist. In the first (to our knowledge) meta-
bolomic study on CD, Bertini et al. [49], examined adult
healthy controls and coeliac patients by "H NMR profiling of
their serum and urine profiles before and after GFD, showing
that a metabolic fingerprint for CD can be defined. This
fingerprint was found to be made up by three components,
one related to malabsorption, one related to energy meta-
bolism, and the third related to alterations in gut microflora
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and/or intestinal permeability. Using this metabolic
fingerprint, it was possible to make predictions about the
coeliac status with a very good accuracy (ca. 84%). One of
the most interesting findings was that the metabolic profile
of CD patients reverts to normality after 12 months of a
strict gluten-free diet; interestingly, a similar behavior was
not found in CD patients when analyzing them from a gut
microflora prospective [58, 59, 63].

The main observed differences in serum spectra between
CD patients and controls were lower levels of several
amino acids (asparagine, isoleucine, methionine, proline,
and valine), methylamine, pyruvate, creatinine, choline,
methylglutarate, lactate, lipids, and glycoproteins and higher
levels of glucose and 3-hydroxybutyric acid. Notably, the
best discrimination is obtained from CPMG spectra (Carr-
Purcell-Meiboom-Gill spin echo sequence) [83], that is, from
spectra in which signals arising from large macromolecules
such as lipidic components are suppressed [49]. So, although
it is known that coeliac patients usually appear to be hypoc-
holesterolemic, lipids do not contribute significantly to the
metabonomic signature of coeliac disease. A decrease in the
level of pyruvate and lactate and a higher level of glucose
in the blood of coeliac patients were observed, probably as
a consequence of an impaired glycolysis process. Glycolysis
impairment can cause a lowering of pyruvate and lactate
levels and an increase of glucose levels in blood. If this
metabolic way is reduced, 3-oxidation is probably increased.
Enhanced S-oxidation and malabsorption can then explain
lower levels of lipids in serum [49]. In these conditions, the
authors hypothesized an increase of the use of ketonic bodies
as a source of energy in coeliac patients, consistently with the
higher observed levels of 3-hydroxybutyric acid in blood and
acetoacetate in urines [49].

Energy conversion from lipids and catabolism of ketonic
bodies are far less efficient than that from glucids. Untreated
coeliac subjects often report symptoms of fatigue. In patients
on a gluten-free diet, fatigue tends to be reduced and, in fact,
ithas been proposed that this condition is gluten-related [74].
In [49], the authors found that in CD patients on a gluten-free
diet the levels of glucose and 3-hydroxy-butyric acids revert
to normality.

Further, the authors found that CD patients are charac-
terized by higher urine levels of some metabolites related to
gut microbiota: indoxyl sulfate (IS), meta-[hydroxyphenyl]
propionic acid (m-HPPA), and phenylacetylglycine (PAG).
M-HPPA mostly originates from gut microflora, being one of
the several products of the microbially mediated breakdown
of larger plant phenolic compounds such as caffeic acid and
its conjugate chlorogenic acids [84]. IS is a harmful uremic
toxin produced in the liver from indole through indoxyl.
Indole is a subproduct of tryptophan metabolism by intestinal
bacteria [85]. Modulation of PAG excretion in urine has
been attributed to gut microflora, and increases of PAG have
been reported in cases of drug-induced phospholipidosis;
nonetheless, the contribution of mammalian and microbial
sources to PAG excretion is not yet fully characterized [86].
All these findings are consistent with the hypothesis that
in CD patients the gut microflora of the small bowel is
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altered or presents peculiar species with their own microbial
metabolome.

In a following investigation [50], the same research group
highlighted again the existence of a metabolic fingerprint for
coeliac disease, confirming most of the previously discussed
metabolites with the additional finding of higher levels of p-
cresolsulfate in the urines of CD patients. Interestingly, p-
cresolsulfate, a metabolite of bacterial origin, is associated
with several gastric-related disease [87], including bowel
cancer [88]. In the same study, the analysis of the so-
called “potential coeliac patients” (i.e., subjects who have a
positive antibody test but no evidence of intestinal damage)
showed that the metabolic patterns of overt and potential
coeliac patients are similar [50] indicating that CD-related
dysmetabolism precedes the intestinal damage. Only a few
serum metabolites differentiate between potential and overt
CD, and none of these metabolites are related to the energy
metabolism [50]. It appears that, as in overt CD patients,
glycolysis is somehow impaired also in potential CD patients.
Impairment of glycolysis explains both the observed lower
lactate levels and the higher glucose levels in blood of
potential CD patients. In urine, there are more metabolites
that discriminate potential and overt CD. The key differences
lie in the concentration of metabolites originating from the
gut microflora (m-HPPA, IS, and PAG) which in potential
coeliac subjects are similar to those of controls, suggesting a
relationship between overt CD, villous atrophy, and bacterial
consortia of the host [50].

The authors concluded that, although free from intestinal
injury, placing potential CD subjects on a gluten-free diet
could be justified because they are experiencing most of the
pathological alterations experienced by overt coeliac patients
[50]. Figure 3 shows the discrimination between overt CD
patients and healthy controls and the statistical prediction of
the potential CD patients: almost all potential CD patients
are predicted as overt CD. The plot shown in Figure 3(a) was
obtained using a training set composed of the serum CPMG
spectra of 34 overt CD patients, 34 healthy controls, and 13
(out of the 34) CD patients after 12 months of gluten-free diet.
It clearly appears that all but one patient on gluten-free diet
were classified as healthy. Similarly, the plot in Figure 3(b)
was built using the CPMG spectra of 61 overt CD patients,
51 healthy controls, and 29 potential CD patients. Almost all
the potential CD patients fall in the CD group, underlining
the affinity between the metabolic fingerprints of these two
dissimilar clinical conditions.

Differences between the metabolic profiles of faeces and
urine of CD and healthy children using a combination of
"H-NMR and GC-MS/SPME techniques were reported by
di Cagno et al. [63]. The analysis allowed the identification
of a group of compounds that were significantly changed in
the treated coeliac children group. A set of volatile organic
compounds and short fatty acids were identified using MS,
whereas amino acids were identified using NMR [63]. Faecal
and urine samples of treated CD children showed elevated
levels of free amino acids (proline, methionine, histidine,
and tryptophan) and lowered levels of some short fatty
acids (butyric, isocaproic, and propanoic acids) compared
to healthy children [63]. The authors suggested that these
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FIGURE 3: (a) Clustering of CMPG (Carr-Purcell-Meiboom-Gill
spin echo sequence) [83] serum spectra of CD patients (filled circles)
and controls (open circles). The discriminant model between the
two groups was calculated using a combination of partial least square
[89] and (regularized) canonical analysis [90] (PLS-RCC) and was
validated using cross-validation. The CPMG spectra of 13 (out of
the 34) CD patients after 12 months of gluten-free diet were then
projected into the discriminant space of the model (stars) and were
assigned to the CD or the healthy group applying a support vector
machine [91] classifier (SVM). (b) Clustering of overt CD patients
(open circles) and healthy controls (filled circles) obtained with
CPMG serum spectra. The discriminant model was calculated using
orthogonal partial least square [92] (OPLS) and validated using
double cross-validation [93]. The CPMG spectra of 29 potential
CD patients were then projected in the model (triangles) and filled
or not according to the results of an SVM classifier. Adapted with
permission from [49, 50]. Copyright (2009 and 2011) American
Chemical Society.

changes may be associated with intestinal and faecal bacteria
modifications that could induce a nonspecific inflammation
and a reduction of the absorptive surface of the intestinal
mucosa; this may lead to a reduction of the absorption of
amino acids which are subsequently lost with stool [63].
By combining microbiology and metabolomics, the authors
showed that a gluten-free diet lasting at least two years did
not completely restore the microbiota of the CD children.
From that work, a broader picture seems to emerge that
microbial indices (i.e., the ratio of faecal cell density of lactic



acid bacteria-Bifidobacterium to Bacteroides-Enterobacteria)
and the levels of some metabolites (i.e., ethyl-acetate, octyl-
acetate, SCFA, and glutamine) are characteristic of CD
patients [63].

6. Perspectives

Metabolomics is a rapidly growing discipline bringing
together analytical technologies, metabolite pathways eval-
uation, and information technology. A major advantage
is the noninvasive or minimally invasive measurement of
potentially useful biomarkers from biofluids such as urine
and plasma. A great deal of validation work (both at the
analytical and data analysis level) has been carried out to
gain full acceptance to metabolomics in routine clinical
practice. Challenges for the development of metabolomics
still exist, including simplified systems to present data to
end-users (such as interpretation of often complex statistical
models), the coordination of multiple data streams, and the
implementation of quality control programs [94]. We expect
that in the next few years it will be clear whether or not
metabolomics will take its place as a complementary or even
an alternative tool in the clinical setting.

At the present time, only few applications devoted to
the investigation of coeliac disease have been presented in
the literature, but a complex picture of the interaction
between energy metabolism and gut microbiota seems to
emerge, providing new hints on the biochemistry of the
disease. In our institutions, as a logical complement to the
results obtained analyzing overt coeliac and potential coeliac
subjects, we are currently applying metabolomics to the
biomolecular investigation of a gluten-related condition
defined as gluten sensitivity [95]. This condition is still not
very well characterized and its pathogenesis is caused by
unknown mechanisms; we believe that metabolomics is a
useful tool to expand our current limited knowledge of this
condition.

Metabolomics-based approaches are expected to enable
diagnosis, prognosis, and prediction of response of individu-
als to treatment. We can expect that metabolomics will pro-
vide more accurate and less expensive biomarkers (obtained
by means of proper statistical analysis and properly validated)
than presently available, which could improve diagnostic
accuracy and sensitivity. However, far more research is
essential to reach such a goal, and a validation of the results
on an epidemiological scale is indeed needed.

Box 1 (MS and metabolomics). The main analytical tech-
niques used in metabolomics are nuclear magnetic resonance
spectroscopy (NMR) and mass spectrometry (MS) [96]. Both
MS and NMR methods provide information on a wide
range of metabolites in a single measurement. Furthermore,
both can be used to identify the metabolites’ structures
and to measure the relative and absolute concentrations of
the molecules (MS has higher sensitivity but NMR is more
reliable for determining concentrations) [97].

Mass spectrometry is a technique to determine extremely
accurate mass of molecules in a pure sample or in a mixture.
The molecules in a sample are converted to ions by an electron
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beam; the ions are accelerated by charged plates and then
deflected by a magnetic field according to the mass-to-charge
ratio of each ion. When the ions reach the detector, the mass-
to-charge ratio is registered to provide a spectrum where
series of peaks are shown reporting the intensity of each
ion generated by the sample. MS is a destructive technique
but requires a very low quantity of sample [98]. Over the
last few years, its application to mammalian study increased,
especially for its high sensitivity, and because it is a major
technique for molecular identification [99]. As opposed to
NMR, MS usually requires metabolites separation before
detection, typically by using gas chromatography (GC) or liq-
uid chromatography (LC). GC-MS is a robust technique for
the analysis of volatile and semivolatile compounds suitable
for chemical derivatization to increase their volatility [100].
Electron ionization (EI) in GC-MS is quite reproducible
[100]. In contrast to GC-MS, LC-MS is especially suitable
for the analysis of nonvolatile and/or thermally unstable
metabolites. The introduction of UPLC (ultraperformance
liquid chromatography) and capillary LC enabled better peak
resolution and further increase in sensitivity and speed, and
it is now successfully applied to metabolomics studies [101].

Box 2 (NMR and metabolomics). NMR spectroscopy is an
analytical technique that exploits the magnetic properties of
certain atomic nuclei. It determines the physical and chemical
properties of molecules by detecting the magnetically active
nuclei. When placed in a magnetic field, an active nucleus
(such as 'H or >C) absorbs electromagnetic radiation at a
characteristic frequency and then reemits it. After absorbing
electromagnetic radiation in the range of frequencies of 'H
(or *C, or*'P....), the sample emits all frequences of its active
nuclei of that type, which constitute its 'H (or ®*Cor’'p,...)
NMR spectrum. The resonance frequency and the corre-
sponding intensity of each signal are dependent, respectively,
on the chemical environment where that particular nucleus
is located (i.e., molecular structure) and on the concentration
of that molecule.

NMR spectroscopy is a nondestructive and highly repro-
ducible technique and provides detailed information on the
molecular structure of both pure compounds and complex
mixtures [102]. In a typical biological fluid, all hydrogen-
containing molecules will give a 'H-NMR spectrum as long
as they are present in concentrations above the detection
limit. The NMR spectrum of a biological fluid is therefore the
superposition of the spectra of thousands of different small
molecules (up to 2500 for urine and up to 200 for serum/
plasma) present in the sample at concentrations >1 yM [103].
An advantage of NMR is that the biological fluid requires only
a mild treatment prior to the analysis.

The main disadvantage of NMR is its relatively low
sensitivity. Another disadvantage of the NMR approach is
the difficult identification of all metabolites in the samples:
"H-NMR spectra of biological fluids are very complex and
often additional two-dimensional NMR experiments may be
needed to assign metabolites in biofluids. The development
of high-resolution 'H magic angle spinning (MAS) spectra
made viable the acquisition of data on small slices of tissue
without any pretreatment [104-106].
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Box 3 (biofluids and metabolomics). Most biofluids used in
metabolomics can be collected noninvasively. The Human
Metabolome Database (http://www.hmdb.ca/) lists 16 dif-
ferent biofluids investigated and up to 5000 identified or
putative metabolites: amniotic fluid (17), aqueous humor (1),
ascites fluid (1), bile fluid (18), blood (4297), breast milk (37),
cellular cytoplasm (49), cerebrospinal fluid (436), faeces (0),
lymph (1), menses (0), mucus (0), pericardial eftusion (1),
prostate tissue (13), saliva (70), sebum (0), semen (4), sweat
(1), synovial fluid (0), tear fluid (1), urine (3873), and vaginal
fluid (0). Of these, 694 have been associated with one or more
diseases and pathologies.

Blood, urine, cerebrospinal fluid, and saliva are the
richest in metabolites. The Human Serum Metabolome
project. [107] (http://www.serummetabolome.ca/) lists 4229
detectable metabolites (most of them lipids) obtained by
enhanced NMR, MS, and other analytical platforms. NMR
was able to measure 1.2% (49/4229) of the human serum
metabolome, GC 2.13% (90/4229), ESI-MS/MS (lipid media-
tor profiling) 2.3% (96/4229), and TLC/GC-FID-MS (general
lipidomics) 79.9% (3381/4229, mostly, however, components
of the complex lipid fraction) and DFI MS/MS is able to
access 3.3% (139/4229) of the serum metabolome. Some
of the compounds identified by NMR are urea (6 mM),
glucose (5 mM), lactic acid, (1.4 mM), glutamine (0.51 mM),
and glycerol (0.43 mM). The least abundant compounds were
carnitine (46 uM), acetic acid (42 uM), creatine (37 uM),
cysteine (34 uM), propylene glycol (22 uM), and aspartic
acid (21 uM), and the lowest concentration reliably detected
using NMR was 12.3 yM (for malonic acid) and 14.5 uM (for
choline).

The Human Urine Metabolome project [108] (http://
www.urinemetabolome.ca/) lists up to 3100 metabolites iden-
tified in urine. Human urine contains many classes of com-
pounds excreted as waste products, including organic acids,
amino acids, purines, pyrimidines, sugars, sugar alcohols,
sugar acids, amines, and other compounds, at a variety
of concentrations. Fresh urine is also characterized by the
presence of human cells (erythrocytes, leucocytes, urothelial
cells, and epithelial cells), bacteria, fungi, sperms, and noncel-
lular components (mucus filaments, cylinders, cylindroids,
pseudocylinders, and crystals, urates).

Some of the metabolites identified in saliva using NMR
are [109] glucose, propionate, acetate, taurine, glycine, ala-
nine, sucrose, dimethylamine, formate, glycine, lactate,
methanol, propionate, propylene glycol, pyruvate, succinate,
and taurine.

A large panel of metabolites has been also identified in
cerebrospinal fluid by using NMR and GC-MS [36]. Among
those obtained by NMR, there are amino acids, sugars, 2-oxo-
glutarate, 2-oxoisovalerate, 3-hydroxybutyrate, 3-hydroxy-
isovalerate, xanthine, and pyruvate.

Up to 50 metabolites were identified in faecal extracts via
NMR [43]: amino acids, n-butyrate, propionate, n-caproate,
3-(4'-hydroxyphenyl) propionate, 5-aminopentanoate, glu-
cose, 5-N-acetylneuraminate, 5-aminosalicylate, N-acetyl-5-
aminosalicylate, deoxycholate, and phenylacetate, many of
which are of bacterial origin.

Box 4 (the metabolomics pipeline). The workflow of a meta-
bolomics study is complex and each step has its own critical-
ities that need to be addressed. The metabolomics workflow
can be summarized as follows [96, 110-112].

Biological Question. It includes definition of the biologi-
cal/biomedical problem to be addressed.

Study Design. It involves power analysis and treatment design.

Data Acquisition. It concerns quality control strategies, exper-
imental setting (platform specific), Sampling, and measure-
ment design.

Data Preprocessing. It is a fundamental step before analysis
involving alignment, baseline correction (MR), phasing,
alignment, bucketing (NMR), normalization, and scaling.

Metabolite Identification. It includes spectral matching (MS)
and peak assignment (NMR).

Statistical Analysis. 1t includes explorative (i.e., PCA and
clustering), predictive (regression, PLS-DA), and univariate
analysis and model optimization and validation.

Biological Interpretation. It involves embedding the results
within the framework of existing biological knowledge.

Box 5 (statistical analysis of metabolomic data). Meta-
bolomic data are high dimensional in nature. Tens, hundreds,
or even thousands of (un) identified metabolites (relative)
concentrations are measured by means of NMR or MS
platforms, usually on a limited number of samples. Biological
information is retrieved from this data by means of univariate
and multivariate statistical methods [27, 113, 114]. Multivari-
ate methods make also use of covariances or correlations
which reflect the extent of the relationships among the
variables, in contrast to univariate methods that focus solely
on the mean and variance of a single variable.

Commonly used univariate methods are t-test and
ANOVA [115] together with their corresponding nonpara-
metric versions [116] and with appropriate correction meth-
ods for multiple testing [117]. Multivariate methods are a
broad category. When the interest centers on predicting or
explaining one variable (either a group category like case/
control or a continuous response) by the other variables,
methods like multiple regression [118] or partial least squares
regression and discriminant analysis (PLS-DA) [119] or its
extensions like Multilevel PLS-DA [120], Orthogonal PLS-
DA [121], and N-way PLS-DA [122] together with a proper
optimization and validation of the models [93, 123, 124] are
used. In other cases, the interest centers on providing insight
into the underlying structure of the complete set of variables
and other tools are used. Some examples are principal
component analysis (PCA) [125], used to reduce the number
of variables when there is correlation present and to explore
relations between objects, or cluster analysis [62], used when
objects have to be grouped to represent data structure. Hybrid
methods like nearest shrunken centroids [126] or simpli-
variate methods [127] and machine-learning techniques like



10

artificial neural networks [128], random forest [129], and
support vector machines [91] are also used in metabolomics
(27,112, 130].
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