29 research outputs found

    Relationship of methane consumption with the respiration of soil and grass-moss layers in forest ecosystems of the southern taiga in Western Siberia

    Get PDF
    The consumption of methane by some soils in the southern taiga of Western Siberia was studied by the static chamber method in the summer of 2013. The median of the specific CH4 flux through the soil was −0.05 mg C/(m2 h) for the entire set of measurements (the negative flux indicates the consumption of methane by the soil). A statistically significant (R2 = 0.81) linear relationship has been found between the specific CH4 flux to the soil and the total respiration of the soil and the grass-moss layers in the studied forest ecosystems. The quantitative theoretical explanation of this relationship is based on the plant-associated and free methanotrophy

    A process-based model of methane consumption by upland soils

    Get PDF
    This study combines a literature survey and field observation data in an ad initio attempt to construct a process-based model of methane sink in upland soils including both the biological and physical aspects of the process. Comparison is drawn between the predicted sink rates and chamber measurements in several forest and grassland sites in the southern part of West Siberia. CH4 flux, total respiration, air and soil temperature, soil moisture, pH, organic content, bulk density and solid phase density were measured during a field campaign in summer 2014. Two datasets from literature were also used for model validation. The modeled sink rates were found to be in relatively good correspondence with the values obtained in the field. Introduction of the rhizospheric methanotrophy significantly improves the match between the model and the observations. The Q10 values of methane sink observed in the field were 1.2-1.4, which is in good agreement with the experimental results from the other studies. Based on modeling results, we also conclude that soil oxygen concentration is not a limiting factor for methane sink in upland forest and grassland ecosystems.Peer reviewe

    Contribution of oxic methane production to surface methane emission in lakes and its global importance

    Get PDF
    Recent discovery of oxic methane production in sea and lake waters, as well as wetlands demands re-thinking of the global methane cycle and re-assessment of the contribution of oxic waters to atmospheric methane emission. Here we analysed system-wide sources and sinks of surface-water methane in a temperate lake. Using a mass balance analysis, we show that internal methane production in well-oxygenated surface water is an important source for surface-water methane during the stratified period. Combining our results and literature reports, oxic methane contribution to emission follows a predictive function of littoral sediment area and surface mixed layer volume. The contribution of oxic methane source(s) is predicted to increase with lake size, accounting for the majority (>50 %) of surface methane emission for lakes with surface areas >1 km2

    Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions

    Get PDF
    High-latitude wetlands are important for understanding climate change risks because these environments sink carbon dioxide and emit methane. However, fine-scale heterogeneity of wetland landscapes poses a serious challenge when generating regional-scale estimates of greenhouse gas fluxes from point observations. In order to reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the taiga zone of The West Siberia Lowland (WSL) on a scene-by-scene basis using a supervised classification of Landsat imagery. Training data consist of high-resolution images and extensive field data collected at 28 test areas. The classification scheme aims at supporting methane inventory applications and includes seven wetland ecosystem types comprising nine wetland complexes distinguishable at the Landsat resolution. To merge typologies, mean relative areas of wetland ecosystems within each wetland complex type were estimated using high-resolution images. Accuracy assessment based on 1082 validation polygons of 10  ×  10 pixel size indicated an overall map accuracy of 79 %. The total area of the WSL wetlands and water bodies was estimated to be 52.4 Mha or 4–12 % of the global wetland area. Ridge-hollow complexes prevail in WSL's taiga zone accounting for 33 % of the total wetland area, followed by pine bogs or “ryams” (23 %), ridge-hollow-lake complexes (16 %), open fens (8 %), palsa complexes (7 %), open bogs (5 %), patterned fens (4 %), and swamps (4 %). Various oligotrophic environments are dominant among wetland ecosystems, while poor fens cover only 14 % of the area. Because of the significant change in the wetland ecosystem coverage in comparison to previous studies, a considerable reevaluation of the total CH4 emissions from the entire region is expected. A new Landsat-based map of WSL's taiga wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland data sets in high latitudes

    Relationship of methane consumption with the respiration of soil and grass-moss layers in forest ecosystems of the southern taiga in Western Siberia

    No full text
    The consumption of methane by some soils in the southern taiga of Western Siberia was studied by the static chamber method in the summer of 2013. The median of the specific CH4 flux through the soil was −0.05 mg C/(m2 h) for the entire set of measurements (the negative flux indicates the consumption of methane by the soil). A statistically significant (R2 = 0.81) linear relationship has been found between the specific CH4 flux to the soil and the total respiration of the soil and the grass-moss layers in the studied forest ecosystems. The quantitative theoretical explanation of this relationship is based on the plant-associated and free methanotrophy
    corecore