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Abstract
This study combines a literature survey andfield observation data in an ad initio attempt to construct a
process-basedmodel ofmethane sink in upland soils including both the biological and physical
aspects of the process. Comparison is drawn between the predicted sink rates and chamber
measurements in several forest and grassland sites in the southern part ofWest Siberia. CH4 flux, total
respiration, air and soil temperature, soilmoisture, pH, organic content, bulk density and solid phase
density weremeasured during a field campaign in summer 2014. Twodatasets from literature were
also used formodel validation. Themodeled sink rates were found to be in relatively good
correspondence with the values obtained in the field. Introduction of the rhizosphericmethanotrophy
significantly improves thematch between themodel and the observations. TheQ10 values ofmethane
sink observed in the fieldwere 1.2–1.4, which is in good agreementwith the experimental results from
the other studies. Based onmodeling results, we also conclude that soil oxygen concentration is not a
limiting factor formethane sink in upland forest and grassland ecosystems.

1. Introduction

The field of greenhouse gas exchange has been coming
into prominence since the 1960s, as the scientific
community faced the need to predict climate change
that is tightly linked with the evolution of the Earth’s
atmosphere (Solomon 2007). However, atmospheric
greenhouse gas monitoring yielded information only
on net planetary-scale fluxes. As a consequence, in the
1980s the realization came that reliable long-term
climate projections are impossible without the knowl-
edge of the distribution and changes in the greenhouse
gases surface sources and sinks. It was mainly the
necessity to estimate these changes for the need of
long-term planning of human activities that has
sparked high interest in the quantification of gas
exchange in natural ecosystems, particularly in soils
(Heimann 2011, Pachauri et al 2014). Methane (CH4)

is a potent greenhouse gas, and the data on net CH4

fluxes is important for the understanding of the
climate system. It strongly influences the photochem-
istry of the atmosphere (Ramanathan et al 1987, Cao
et al 1995). In the recent decades, the attention to
methane budgets has been growing, as it was found
that the radiative forcing of the atmospheric methane
is second only toCO2 (Myhre et al 2013).

The increase in atmospheric CH4 is caused by an
excess of sources over sinks, amounting on average to
5–48 TgCH4 year

−1 (1 Tg=1012 g) in recent decades
(Khalil and Rasmussen 1985, Cicerone and Orem-
land 1988, Dlugokencky et al 2003, Dlugokencky
et al 2009). In terms of their effect on the atmospheric
CH4 budget, soils can act in two different ways: (1)
flooded soils can act as sources of methane which is
produced under strictly anoxic conditions (Arah and
Stephen 1998); (2) upland soils can act as sinks of
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tropospheric CH4 and as a biofilter for microbially
produced CH4 in anoxic soil or sediment compart-
ments, which reduces the CH4 emission into the
atmosphere (Bender and Conrad 1994). Therefore,
assessment of CH4 fluxes from/into soils should play
an important role in the prediction of trends in atmo-
spheric CH4 concentration.

One possible way to estimate and predict CH4

fluxes at the regional level is to develop a process-
basedmodel to simulate CH4 flux rates in various eco-
systems. It should implement an assessment of CH4

fluxes by linking climatic, edaphic and biological con-
trols and provide a mechanistic basis for spatial analy-
sis and for future change projections at the regional
and global scales (Cao et al 1995).

Wetlands are the largest natural source of CH4,
emitting 100–231 TgCH4 year

−1 (Bousquet et al 2011,
Pachauri et al 2014). Emission rates of 31–112 TgCH4

year−1 were given for paddy fields in different studies.
These values constitute a significant fraction of the glo-
bal average emission of 503–610 TgCH4 year-1

(Pachauri et al 2014). Therefore,methane effluxmodel-
ing inmires (Walter et al 1996, Arah and Stephen 1998,
Bohn et al 2013, Zhu et al 2013) and paddy fields (Cao
et al 1995, Van Bodegom et al 2001, Huang et al 2004,
Babu et al2006)has receivedmost attention.

Methane is largely removed from the atmosphere
by tropospheric oxidation by hydroxyl radical (OH),
which accounts for 85%–90% of the estimated annual
mean sink of 570 TgCH4 year

−1 (Bousquet et al 2006).
The remaining sink is thought to be split in roughly
equal parts between the stratospheric removal by OH
and O1(D) and biological consumption in surface soils
(Smith et al 2000, Curry 2007). Terrestrial environ-
ments are the only knownnet biological sinks for atmo-
spheric methane. Soils are considered an important
component of globalmethane dynamics (Adamsen and
King 1993), consuming 9 to 45 Tg CH4 year

−1 (Ehhalt
et al 2001, Curry 2007), an amount comparable to 1 to
7% of the total global emission. However, statistical
upscaling from the distribution of actualmeasurements
leads to a much wider range of uncertainty, 7–120
TgCH4 year−1 (Smith et al 2000, Curry 2007). Cur-
rently, the level of understanding of the soil sink of
atmospheric methane is inferior to that of atmospheric
sink, and few attempts to model it have been made
(Striegl 1993, Potter et al 1996, Curry 2007).

Net methane emission is a sum of production and
oxidation. The latter might be rather high, e.g.
methane oxidation in the surface was shown to reduce
methane emissions from saturated wetland soils by
10%–90% (King et al 1990, Epp and Chanton 1993,
Schipper and Reddy 1996). Therefore, any adequate
CH4 emission model must contain a module describ-
ing methane consumption. Besides, on the regional
scale, the areas that emit methane of geological origin,
e.g. the ‘mud volcanoes’, (Etiope 2009, Etiope
et al 2009), are typically overlaid by efficiently oxidiz-
ing ecosystems as forests and grasslands (Belova

et al 2013, Oshkin et al 2014). Thus, a methane oxida-
tion module is a requirement for any regional-scale
model as well.

Methane consumption in upland soils varies
strongly on local, global, seasonal and interannual
scales (see table 1). To explain this variability, suchwell-
known CH4 sink controls as ground surface temper-
ature, water table depth, above-ground biomass (Arah
and Stephen 1998, Cao et al 1998), soil properties (e.g.,
bulk density, porosity) (Striegl 1993, Ridgwell et al 1999,
Curry 2007) are nowadays accounted for in field mea-
surements and laboratory experiments. The emerging
relationships are attractive to global climate modelers,
but they mask a lot of potentially important detail. A
process-based model should indicate what underlies
the correlations obtained by measurement, and under
what circumstances they are susceptible to alteration
(Arah and Stephen 1998). Last but not least, the ability
to build a model founded on basic principles is the best
test of our understanding of theprocess.

Over the recent years, estimation of methane emis-
sion from the Russian territory has been our general
goal (Glagolev et al 2011, Glagolev et al 2012, Sabrekov
et al 2013, Sabrekov et al 2014). As mentioned earlier,
such an estimate cannot be deduced without having a
methane sink model for upland soils. Existing methane
sink models are largely empirical, particularly in regard
to their treatment of biological oxidation, with rare
exceptions (Grant 1998, Saggar et al 2007, Zhuang
et al 2013). However, even thosemodels do not account
for certain specific features of methane sink in soils,
such as methane consumption by microorganisms liv-
ing on plant roots. Therefore, the model in develop-
ment had to satisfy the two main requirements. First,
the model must be a process-based so that it can well
reproduce the process of methane sink by the land
biomes based on the known biochemical and physical
processes. Second, it must contain only those para-
meters that can be obtained for all types of soils and
biomes over the Russian territory. Due to these require-
ments, we had to only use the average parameter values
found for the respective biome types and soils in litera-
ture. This study presents an ad initio attempt to con-
struct a process-basedmodel ofmethane sink in upland
soils including both the biological and physical aspects
of this problem without any calibration of model para-
meters. Since we do not consider seasonally or perma-
nently waterlogged soils, methane production is
assumed to benegligible.

2.Materials andmethods

2.1. Test sites
The field experiments were carried out during the
2014 summer period at 3 sites in the south taiga zone
of Western Siberia, in one forest and two grassland
sites. The forest site (FS) is a coniferous spruce-pine-fir
forest, the grasslands sites include a mesophilic
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grassland (G1) and a mesophilic grassland with sparse
birch cover (G2). Detailed plant community descrip-
tions are presented in appendix A. Basic soil properties
of the test sites are shown in table 2.

The water table depth was located at a 3–4m depth.
Soil water content did not exceed 70% of the maximum
water holding capacity. Methane concentration mea-
surements at different depths revealed that, in such con-
ditions, methane production by soils is negligible
(Whalen et al 1992, Adamsen andKing 1993, Priemé and
Christensen 1997). Therefore, methane production is
assumed tobenegligible in ourmodel.

2.2. Studymethods
2.2.1. CH4 andCO2 fluxmeasurements
Themeasurements ofCH4fluxwereperformedusing the
static chamber method (Hutchinson and Mosier 1981)

following the methodology described earlier by Glagolev
et al (2011). The chamber consisted of two parts: a
permanent square stainless steel collar (40 cm×40 cm,
embedded 15 cm into the soil surface), and a removable
plexiglass box (30 or 40 cm height). To minimize the
changes of chamber temperature during measurement,
the plexiglass box was covered with reflecting aluminum
fabric. The air inside the chamber was circulated by a
battery-operated internal fan; a water channel on the
chamber rim acted as a lock against leaks into or out of
the chamber. Four gas samples were taken at 20min
intervals into 12ml nylon syringes (SFM,Germany). The
total chamber closure time was 60min After sampling,
the syringes were immediately sealed with rubber stop-
pers and delivered to the laboratory. The CH4 concentra-
tionswere corrected for leakages as described in (Glagolev
et al2011).

Table 1. Summermethane consumption in several boreal and temperate upland ecosystems.

Reference (scale of variability) Ecosystem type Coordinates

Methaneflux±SDa,mgCH4

m−2 h−1 Sampling period

−0.022±0.006 July (for 3 different
sites)

Adamsen andKing 1993 (local
and global spatial)

Spruce-lichen

woodland

54.43°N, 66.42°W −0.011±0.006

−0.065±0.003
Mixed pine-oak forest 43.94°N, 69.57°W −0.113±0.005 June

−0.085±0.013 June 1989

Crill 1991 (interannual) Mixed deciduous-con-

ifer forest

43.08°N, 71.57°W −0.112±0.010 June 1990

−0.091±0.034 July 1989

−0.122±0.003 July 1990

Kolb et al 2005 (regional spatial) Beech-oak forest 51.00°N, 9.85°E −0.112±0.025 June

Beech forest 51.57°N, 10.17°E −0.040±0.032 June

−0.063±0.004 June

Semenov et al 2004 (seasonal) Mixed coniferous

forest

54.81°N, 37.59°E −0.055±0.020 July

−0.081±0.007 August

−0.073±0.042 June

Tate and Striegl 1993 (local spa-
tial and seasonal)

Burned tallgrass prairie 39.08°N, 96.58°W −0.042±0.008 July

−0.033±0.008 August

−0.044±0.017 June

Unburned tallgrass

prairie

39.08°N, 96.58°W −0.021±0.004 July

−0.025±0.005 August

−0.026±0.017b June

Van den Pol-vanDasselaar

et al 1998 (seasonal)
Heather grassland 52.00°N, 5.78°E −0.028±0.020b July

−0.030±0.015b August

a SD is usually given for temporal replicates.
b SD is given for spatial replicates.

Table 2.Basic soil properties of uppermineral horizons (horizonA from appendixD) for all test sites.

Site Coordinates Corg,% pH Soil type according to Jahn et al (2006)

FS 56.862°N, 83.070°E 2.7 6.0 Stagnic Cambisol (Eutric, Siltic)
G1 56.872°N, 83.074°E 5.4 5.6 Haplic Luvisol (Siltic)
G2 56.883°N, 83.068°E 5.5 6.1 Albic Cutanic Luvisol (Epidystric, Siltic)
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Until the chromatographic analysis, the syringes
with the samples had been kept in salt solution to pre-
vent methane leakage. Boiled water was used for this
purpose, because it does not contain methane in the
amounts capable of affecting the measurement.
Methane concentrations were measured with a mod-
ified gas chromatograph CPM-4 (‘Chromatograph’,
Moscow, Russia) having a flame ionization detector of a
chromatograph LHM-80 (‘Chromatograph’, Moscow,
Russia), 1 m stainless steel column (2.5 mm o.d.) filled
with Sovpol (80–100mesh) at 40 °Cwith hydrogen as a
carrier gas (flow rate 5 mlmin−1). The loop volumewas
0.5ml, the volume of injected sample was 3–4ml. Each
sample of gas from a syringe was analyzed three times;
the mean of the three concentrations was used for the
flux calculation. The gas chromatograph was calibrated
with standard gases (1.99±0.01, 5.00±0.01 and
9.84±0.01 ppmvmethane in a synthetic air) prepared
at the National Institute for Environmental Studies,
Japan. The R2 values for the linear correlation between
signal (area of peak) and concentration in the standard
were 0.998 and higher. The error of concentrationmea-
surement (standard deviation as percent of the mean of
6 to 10 daily repetitions of the standard) was typically
0.5% for the 1.99 ppmv CH4 standard. Units were con-
verted from ppmv to mgCH4 m−3 using the ideal
gas law.

Carbon dioxide fluxes were measured in the same
way, except that in that case, four samples were taken
at 3 min intervals over a period of 9 min. The above-
ground biomass was not removed within the chamber
collars. CO2 concentration in the samples was mea-
sured not later than a few hours after sampling using
an infrared gas analyzer DX-6100 (RMT Ltd, Russia).
This device was calibrated with a standard gas
(357±5 and 708±10 ppmv CO2 in a synthetic air),
prepared at VNIIEMCorporation, Russia. The relative
error of concentration measurement (standard devia-
tion as percent of themean of 3 to 5 daily repetitions of
standard)was typically 3% for both standards.

Fluxes were calculated from the linear regression
(Kahaner et al 1989) for CO2 emission and exponential
regression for CH4 uptake (see appendix B), with
weights inverse to concentration measurement uncer-
tainty for the chamber headspace concentration versus
measurement time. The minimal detectable fluxes
(corresponding to a chamber headspace concentra-
tion change on magnitude of concentration measure-
ment error over chamber closure time (Wang and
Wang 2003)) were 0.003 gC-CO2 m

−2 h−1 for CO2

emission and −0.004 mgCH4 m−2 h−1 for methane
uptake. Throughout the manuscript, the convention
that fluxes to the atmosphere are positive is adopted.
Since the NDFE-corrected CH4 and CO2 fluxes (see
(Livingston et al 2010) for details)were just 2%and 6%
higher in terms of absolute values, respectively, than
the fluxes calculated with the above method, the
uncorrected valueswere used instead.

2.2.2. Environmental characteristics
Air and soil temperatures were measured during flux
measurement by the temperature loggers TERMO-
CHRON iButton DS 1921–1922 (DALLAS Semicon-
ductor, USA). The frequency of measurements was
once per minute, the accuracy of individual measure-
ment being 0.125 °C. The obtained temperature data
were averaged across all replicates for each chamber
site. After the flux measurement at each site, soil
samples were taken from three depths (5, 10 and
15 cm), three replicates each, in order tomeasure their
water content. Soil water content was measured
gravimetrically by oven-drying at 105 °C. Soil samples
for physical analyses 0.5 kg eachwere randomly picked
from each soil horizon. Soil physical properties were
determined as described in (Shein 2015). Bulk density
was measured by drying a known volume of field soil
sample until its weight stabilized, whereafter solid
phase density was determined by displacement of
water by the known mass of soil. The soil clay content
was determined by the pipette method following
pretreatment to remove soluble salts, organic matter
and iron oxides. Soil organic content was determined
by CHNS-analyzer PE-2400 (PerkinElmer, USA). Soil
pHmeasured in a 1:2 ratio (soil:distilled water) using a
glass electrode.

AWRB soil classification scheme was used to clas-
sify the soils (IUSS 2014). Botanical descriptions of the
vegetation communities within each chamber site
were conducted.

2.2.3. Data analysis
For the comparison of modeled against measured
fluxes, measurements on eight different chamber sites
(six on FS site, one on G1 and one on G2) were
provided. The total number of CH4 fluxmeasurements
is 40, CO2 flux—38. For each chamber site (in the same
point in space) 2 to 12 temporal replicates of methane
flux and 2 to 10 temporal replicates of total ecosystem
respiration were taken in a row (i.e., within several
hours) were obtained. For further calculations and
comparisons, we use the weighted median of methane
flux andmedian of total ecosystem respiration across all
replicates for each chamber site. Weights were assigned
in inverse proportion to squares of individual flux
uncertainty. Weighted median was calculated as
described by Cormen (2009). The solution of partial
differential equations, numerical integration for calcul-
ation of root biomasswere performedwithMATLAB v.
7.8.0 (MathWorks, USA). Uncertainty ofmodel predic-
tions and sensitivity of model to uncertainty in certain
parameters were calculated using bootstrapping as
described in appendixC.

2.2.4.Model validation against data from other studies
For themodel to be fully validated, datasets originating
from other sites were also used. Unfortunately, the
model runs require rather large datasets, so only two
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other datasets were deemed fit for comparison with
themodel values and the observed sink rates.

The first of the comparison datasets was obtained in
the mixed hardwood forest site in College Woods
(43.13°N, 71.95°W, New Hampshire, USA) during the
growing seasons of 1989–1993. However, while only the
1989–1990 data have been published (Crill 1991), the
1991–1993 data were obtained using the same methods
at the same sites. In order to achieve higher precision in
the live rootbiomass and in comparisonofmodeled ver-
sus observedmethane sinkmagnitudes, soil respiration,
methane consumption by soil methanotrophs (both—
per gram of dry soil) and their temperature sensitivities
were adopted from the incubation experiment data
obtained at the same site (Crill 1991).

The seasonal soil moisture profile was derived
from the averaged multiannual data (2001–2007)
from the Hemlock tower site in Harvard Forest, which
is similar to the CollegeWood site in terms of climatic
characteristics and vegetation cover (Harvard Forest
Data Archive 2009). The data on soil clay fraction was
adopted from the field sampling results for the same
region (Finzi 2009). The rest of the required data were
adopted from the original source (Crill 1991). In order
to reduce the importance of individual outliers and
measurement bias, monthly averages for April–Octo-
ber were used (30–37 individual CH4 and CO2 flux
measurements per month). Since there was virtually
no vegetation inside the chamber collars during the
measurement (i.e. the entire root biomass was con-
tributed by the nearby trees), above-ground biomass
was not considered in the calculation of root biomass.

The second dataset was obtained in the native tall-
grass prairie and experimental agricultural field sites in
The Konza Prairie Research Natural Area (39.08°N,
95.58°E, Kansas, USA) over the growing season of
1990 (Tate and Striegl 1993). For more precise calcul-
ation of the live root biomass, the soil respirationmag-
nitudes (per gram of dry soil) and its temperature
sensitivity were taken from the The Konza Prairie
Research Natural Area soil incubations (Fierer
et al 2006). The soil clay content (Boutton et al 1998,
Nippert et al 2012), root-to-shoot ratio (Ojima
et al 1994, Fay et al 2003, Nippert et al 2012) and soil
bulk density and solid phase density (Grahammer
et al 1991, Shaver et al 2002) of the Konza Prairie
Research Natural Area soil were used (as averages).
Where unavailable for the same area, the soil data
from the same regionwere used.

3.Model description

Anumber experimental studies show that the following
factors are of importance formethane consumption:

• soil temperature—(King and Adamsen 1992, Wha-
len andReeburgh 1996,DeVisscher et al 2001);

• soil moisture—(Adamsen and King 1993, Castro
et al 1995, Gulledge and Schimel 1998);

• diffusivity in the soil pore space—(Dörr et al 1993,
Potter et al 1996, Ball et al 1997);

• methanotrophy substrate concentrations (oxygen
andmethane) and the capacity of methanotrophs of
various soils to consume them—(Bender and Con-
rad 1992, 1994, Knief et al 2003, Knief and
Dunfield 2005).

The model is designed to couple the processes of
consumption and transport of gaseous oxygen and
methane in pore space of one-dimensional column of
upland soils. Influence of the factors listed above was
taken into account. Since the soil at the site is not
waterlogged (soil moisture is less than 70% of max-
imum water holding capacity), CH4 production is
assumed to be negligible (Crill 1991, Whalen
et al 1992, Adamsen andKing 1993, Priemé andChris-
tensen 1997). Themodel assumes thatmethane is con-
sumed by two groups of methanotrophs: those living
on plant roots and those inhabiting the soil, but not
associated with the rhizosphere (termed ‘rhizospheric’
and ‘soil’ methanotrophs from now on, correspond-
ingly). The CH4 consumption rate by both rhizo-
spheric and soil methanotrophs follows Michaelis–
Menten kinetics for both methane and oxygen, and is
also a function of soil temperature andmoisture.

The model describes respiration of both the plant
roots and the microorganisms inhabiting the soil. Soil
respiration rate is the function of soil temperature and
soil carbon content. Root respiration rate is the function
of soil temperature and root biomass. Both soil and root
respiration follows Michaelis–Menten kinetics for oxy-
gen. Transport of both CH4 and O2 in soil is by mole-
cular diffusion through the air-filled soil pore space. The
model calculates methane fluxes to the atmosphere.
Detailed description of themodel is given in appendix C
(table C1). Input parameters include air temperature,
CO2 fluxmeasured by dark chambers (total respiration,
TR), soil profiles of temperature,moisture, bulk density,
solid phase density, carbon content and clay content.

Themodel is formulated similarly to the othermod-
ern models or model blocks predicting methane con-
sumption in wetlands (Walter et al 1996, Arah and
Stephen 1998, Grant 1998) and upland soils (Zhuang
et al 2013). However, there are notable differences
between those prototype models. First, all the necessary
parameterswere obtained from literature for appropriate
climate zone (if it was possible) and averaged across all
sources. The model parameters were not calibrated, as
the aim was to examine how modern knowledge of
methane consumption in upland soils can reproduce the
values of methane fluxes observed in chamber measure-
ments. Second, in the above-mentioned models, rhizo-
spheric methane consumption was not considered.
Current model introduces that process, taking into
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account root biomass and root density distribution in the
soil profile (see appendix C for details). In order to esti-
mate root biomass, the balance approachwas used. Since
total respiration is a sum of soil, below-ground and
above-ground plant biomass respiration, root biomass
can be estimated from their difference. Soil, root and
shoot respiration rates per unit soil/plantmass and root-
to-shoot ratio required for these calculations were bor-
rowed from literature (see appendixC for details).

4. Results and discussion

The values of the weighted medians (WM) of methane
flux, medians of TR and the mean magnitudes of

various ecological parameters are presented in table 3
(see appendix E (table E1) for the full overview of
results).

The results ofmodel runs are presented in figure 1.
The simulated methane uptake was generally in good
agreement with the chamber flux data, although
underestimation did occur in two of the chamber sites
(2 and 8 from table 3). Statistical analysis of the differ-
ences in methane oxidation between the sites is pre-
sented in appendix F (table F1). It doesn’t show a lot of
significant differences. However, according to litera-
ture data reported in table 1 it appears to be a typical
pattern. Methane fluxes obtained in our investigation
are in the same range and have the same level of

Table 3. Summary of themeasuredfluxes and ecosystemparameters.

Temperature, °C

depth in soil column, cm

Soilmoisture (by
mass) at the depth,

fraction, cm

№ Site

Date

in 2014

CH4fluxWM±SD,
mgCH4m

−2 h−1

Median of

TR±SD, gC-CO2

m−2 h−1 air 0 5 10 15 5 10 15

1 FS 23.07 −0.053±0.019 0.25±0.05 14.2 14.9 15.5 15.0 14.5 0.36 0.39 0.44

2 FS 26.07 −0.085±0.030 0.21±0.01 20.4 21.0 16.4 13.5 13.5 0.37 0.35 0.32

3 FS 29.07 −0.076±0.004 0.26±0.05 20.4 18.5 15.7 13.1 13.0 0.40 0.37 0.30

4 FS 1.09 −0.112±0.031 0.30±0.08 20.3 19.5 14.0 12.6 11.9 0.35 0.33 0.27

5 FS 2.09 −0.132±0.002 0.18±0.07 9.5 9.3 10.7 10.7 10.5 0.33 0.32 0.26

6 FS 2.09 −0.118±0.012 0.24±0.02 9.4 9.3 10.7 10.6 10.5 0.25 0.25 0.25

7 G1 8.08 −0.038±0.012 0.29±0.06 13.2 19.3 18.2 13.0 12.0 0.20 0.16 0.14

8 G2 9.08 −0.089±0.045 0.36±0.03 14.6 20.2 18.7 13.7 12.7 0.14 0.09 0.09

Figure 1.Observed (WM) versus predicted values ofCH4fluxes for this study sites. Triangles indicate grassland chamber sites, squares
indicate forest chamber sites. Black symbols denotemodel experiment 1, red symbols—model experiment 2, cyan symbols—model
experiment 5 (see table 5 for details). The solid line gives a 1:1 slope.Theother lines indicate linearfits for correspondingmodel experiments.
Thehorizontal and vertical error bars indicate±1SDwith respect to theweightedmedian value andmodeledflux respectively.
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uncertainty. It means that for analysis of predictive
ability of process-based models more precise data on
methane consumption are necessary.

Of course, the agreement between modeled and
experimental values could be worse for individual sites
if model parameters adopted only from literature are
used. However, at the regional and global scale this
approach could be functional because of the averaging
ofmodel parameters from several sources.

4.1.Model sensitivity
Figure 1 shows standard deviations of methane fluxes
simulated by the model (vertical error bars). The
uncertainty follows from the precision of the model
parameters, and on average is 0.04mgCH4 m−2 h−1.
Since all model parameters were adopted from literature
data, it is possible to identify parameters crucial for
making methane uptake modeling more accurate. It was
done by bootstrapping as described in appendix C. Since
several model parameters are dependent and/or were
measured simultaneously, they were grouped in cate-
gories. This analysis is presented in table 4. It shows that,
on average, uncertainties introduced by soil and rhizo-
spheric methanotrophy components are close and are
higher than uncertainty from the other groups of
parameters.While there are no studies about variability of
rhizospheric methanotrophy in upland soils, several
studies indicate that parameters of free soil methanotro-
phy are very variable between different soil and ecosys-
tems types (Czepiel et al 1995, Knief et al 2003, Nazaries
et al 2013b). For improving the soil methane consump-
tion models it is necessary to reveal controls of this
variability.

A model simulation was conducted to determine
the effect of soil temperature on methane fluxes.
Numerical tests have shown that a 10 °C increase in
soil temperature leads to a 18%–40% increase in
methane sink (in other words, the flux becomes more
negative). This result is in good agreement with the
data from experimental studies on temperature sensi-
tivity of CH4 sink in soils and confirm the idea that
during growing season methane consumption is
mostly limited not by temperature but by diffusivity of
CH4 in soil pore space (Born et al 1990, King 1997,
Bowden et al 1998, Gulledge and Schimel 2000). It is
also noteworthy that the temperature increase pro-
duced a greater effect when the soil moisture was
lower, just as expected (Priemé andChristensen 1997).

Modeled oxygen concentrations were high enough
in the soil even at the highest possible soil moisture
contents (i.e. the lowest diffusivity), implying that oxy-
gen did not limit methanotrophy. It is confirmed by
the numerical experiments: a twofold increase of both
root and soil respiration reduced the CH4 flux by less
than 0.1%.

4.2. The role of rhizosphericmethanotrophy
The model describes two methane sink components:
consumption by the soil methanotrophs and con-
sumption by the rhizospheric methanotrophs. While
the former is well known (e.g., Holmes et al 1999, Kolb
et al 2003, Kolb et al 2005), the latter is much more
obscure, having been mostly studied in plant commu-
nities of wet ecosystems (Gerard and Chanton 1993,
King 1994). We conducted a quantitative examination
of the importance of rhizospheric methane consump-
tion components (table 5, model experiments 1–5). It
appeared that the assumption of zero activity of the
rhizospheric methanotrophs significantly reduces the
match between the model and the observations
(table 5, model experiment 1 and 2). Thus without
rhizosphericmethanotrophy it is impossible to explain
local spatial variability ofmethane flux into the soil.

As we use the parameters of soil methane oxidation
taken from the literature data, they would not, most
likely, match those typical for the investigated soils.
However, even if those values are in fact higher or lower,
model experiments show that it would not result in a
much better R2 for the observed versus predicted
methane fluxes with excluded rhizospheric methano-
trophy (table 5, model experiment 3). Neither do the
values of rhizospheric methane oxidation parameters
affect the correspondence betweenmeasured andmod-
eled fluxes. Because they were obtained for wet ecosys-
tems, they could overestimate rhizospheric methane
consumption in upland soils. Model calculations reveal
that R2 does not become much worse if rate of rhizo-
sphericmethaneoxidationbecomes 2 or 4 times smaller
(table 5, model experiment 4). Of course, the relative
contributions of the rhizospheric and soil methano-
trophs tomethane consumption cannot be reliably par-
titioned based solely on the present data. But numerical
experiments show that improvement effect due to tak-
ing rhizospheric methanotrophy into account does not
depend on values ofmicrobiological parameters used in
themodel.

Table 4.Model sensitivity to different groups of parameters (see appendixC for details).

Group ofmodel parameters

Averagemagnitude of uncertainty introduced by a group ofmodel para-

meters,mgCH4m
−2 h−1

Free soilmethanotrophy (K ,ox O, 2 K ,s CH, 4 V ,lit CH, 4 Vmin CH, 4) 0.0294

Rhizosphericmethanotrophy (K ,ox O, 2 K ,r CH, 4 V ,r CH, 4 Br) 0.0277

Sensitivity ofmethanotrophy to soilmoisture (a0, a1, a2) 0.0105

Sensitivity ofmethanotrophy to soil temperature (b0,
b1, b2)

0.0065

All other parameters 0.0083
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It is also interesting to test howmethane consump-
tion would change if rhizospheric methanotrophy is
not influenced by soilmoisture.Microorganismson the
root surface usually live in optimal moisture conditions
thanks to the presence of root exudates and specific
microclimate and do not depend on moisture of sur-
rounding soil (Philippot et al 2009). Numerical experi-
ment shows that this assumption leads to better R2 for
the observed Versus predicted methane fluxes (table 5,
model experiment 5).

The data presented above reflect the within-eco-
system local spatial variability of methane sink in nat-
ural ecosystems. Modeling results suggest that root
biomass might be the factor explaining a substantial
fraction of this variability. However, the spatial varia-
bility of the sinkmight also be explained by some other
factors. As long as the CH4 consumption rate by soil
free methanotrophs used in the model was the same
for all chamber sites, it could not explain this varia-
bility in themodel output.

The data from Tate and Striegl (1993) allow the
performance of simultaneous model validation for
both spatial and temporal methane flux variability. In
that study, CH4 fluxes were measured in tallgrass
prairie ecosystem sites during the growing season of
1990. Calculations were done only for May–July per-
iod because since August the respiration was sup-
pressed by drought so that a reliable root biomass
estimate could not be obtained. The effect of rhizo-
spheric methanotrophy inclusion is shown in figure 2
and table 5 (model experiments 6–8). Without rhizo-
spheric methanotrophy, the model could not satisfac-
torily explain CH4 uptake variability (table 5, model
experiment 7). Conversely, the inclusion of rhizo-
spheric methanotrophy leads to the significance of the
predicted versus observed flux linear dependence
(table 5,model experiments 6, 8).

The role of rhizospheric methanotrophy can be
clearly demonstrated by the example of agricultural
ecosystems. Having been planted, the cultivated plants

Table 5.The parameters of linear regression between observed and predicted fluxes in the differentmodel experiments.

Parameters of linear regression: predicted flux=a · observedflux+b

№ Model experiment a

b,mgCH4

m−2 h−1 R2
adj p

RMSE,mgCH4

m−2 h−1

Data from this study, n=8

1 Bothmethanotrophy components taken into account 0.56 −0.032 0.46 0.040 0.018

2 Rhizosphericmethanotrophs excluded 0.06 −0.022 −0.05 0.454 0.006

3 Rhizosphericmethanotrophs excluded, soilmethano-

trophy rate ismultiplied by

0.5 0.06 −0.009 0.01 0.349 0.005

2 0.11 −0.033 −0.07 0.490 0.013

4 0.07 −0.061 −0.14 0.732 0.018

4 Bothmethanotrophy components taken into account,

rhizosphericmethanotrophy rate is divided by

2 0.40 −0.018 0.40 0.071 0.017

4 0.27 −0.016 0.35 0.105 0.012

5 Bothmethanotrophy components taken into account,

rhizosphericmethanotrophs live at an optimal soil

moisture conditions

0.525 −0.044 0.71 0.005 0.011

Data from (Tate and Striegl 1993), tallgrass prairie, n=10

6 Bothmethanotrophy components taken into account 0.53 −0.032 0.35 0.042 0.014

7 Rhizosphericmethanotrophs excluded 0.05 −0.029 −0.11 0.761 0.018

8 Bothmethanotrophy components taken into account,

rhizosphericmethanotrophs live at an optimal soil

moisture conditions

0.53 −0.038 0.55 0.008 0.011

Data from (Tate and Striegl 1993), sorghumfield, n=4

9 Bothmethanotrophy components taken into account 1.10 −0.038 0.85 0.050 0.003

10 Rhizosphericmethanotrophs excluded −0.12 −0.045 0.33 0.256 0.007

11 Bothmethanotrophy components taken into account,

rhizosphericmethanotrophs live at an optimal soil

moisture conditions

1.26 −0.035 0.89 0.036 0.003

Data from (Crill 1991), mixed deciduous-conifer forest, n=7

12 Bothmethanotrophy components taken into account 1.10 0.027 0.91 0.0005 0.010

13 Rhizosphericmethanotrophs excluded 0.75 0.014 0.90 0.0007 0.007

14 Bothmethanotrophy components taken into account,

rhizosphericmethanotrophs live at an optimal soil

moisture conditions

1.22 0.026 0.89 0.0009 0.012
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intensively grow their root systems. Comparison with
the model may be drawn based on the sorghum field
data of the first month after planting from (Tate and
Striegl 1993). Calculations performed both with and
without rhizospheric methanotrophy are presented in
figure 3 and table 5 (model experiments 9–11). Again,
the inclusion of rhizospheric methanotrophy grants a

statistical significance to the linear regression of pre-
dicted versus observed fluxes. In contrast, the same
correlation would be negative and not significant if
rhizospheric methanotrophy is omitted (table 5,
model experiment 10).

Use ofmultiannual (1989–1993) seasonal dynamic
of methane sink in the College Woods (Crill 1991 and

Figure 2.Observed versus predicted values of CH4fluxes for Tate and Striegl (1993) tallgrass prairie sites. Black symbols denotemodel
experiment 6, red symbols—model experiment 7, cyan symbols—model experiment 8 (see table 5 for details). The solid line gives a
1:1 slope. The other lines indicate linear fits for correspondingmodel experiments. The horizontal and vertical error bars indicate
±1 SDwith respect to the average flux value andmodeled flux respectively.

Figure 3.Observed versus predicted values of CH4fluxes for Tate and Striegl (1993) sorghumfield sites. Black symbols denotemodel
experiment 6, red symbols—model experiment 7, cyan symbols—model experiment 8 (see table 5 for details). The solid line gives a
1:1 slope. The other lines indicate linear fits for correspondingmodel experiments. The horizontal and vertical error bars indicate
±1 SDwith respect to the average flux value andmodeled flux respectively.
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unpublished data by P Crill for the same site) allows to
avoid influence of spatial uncertainty onmodel valida-
tion. Since measurements were conducted seasonally
in the same locations spatial variability could not affect
the CH4 consumption rates. The root biomass has
pronounced seasonal dynamic (Vogt et al 1995, Pregit-
zer et al 2000) and can influence on methane con-
sumption on a seasonal scale. Since the profile data on
methane consumption rate by soil freemethanotrophs
are available for this site (Crill 1991), it is also possible
to provide a quantitative estimation of the role of rhi-
zosphericmethanotrophy.

The results of model calculations are presented in
figure 4 and table 5 (model experiments 12–14). Free
soil methanotrophy cannot explain the methane flux
from the atmosphere to the soil on its own. Predicted
fluxes without rhizospheric methanotrophy are out of
99% confidence interval for average observed flux for
all months. Only the inclusion of rhizospheric metha-
notrophy lets one achieve quantitative correspon-
dence between predicted and observed fluxes.

4.3. Perspectives of themodel development
Several improvements may be introduced in the
model. First, several more factors affecting the metha-
notrophy activitymay be considered:

• concentrations of methanotrophy inhibitors: nitrates,
nitrites and ammonia (Adamsen and King 1993,
Boeckx et al 1997), volatile organic compounds
(Boeckx et al 1996, Chiemchaisri et al 2001) and other
chemical compounds (ChanandParkin 2000);

• soil pH (Morishita et al 2004, Kolb 2009).

In the currentmodel version, inhibition could not be
simulated because data on soil inhibitor concentrations

were not available. The soil pH effect onmethanotrophy
is ambiguous. According to the results presented else-
where, methanotrophs can live within a wide pH range
(Serrano-Silva et al 2014). To our knowledge, no data
showing independent pH effect on upland soilmethano-
trophywere obtained.Onemay surmise that, by virtue of
great species diversity and adaptation capacity,methano-
trophs may form consortia that efficiently oxidize soil
methane at anypH level possible inupland soils.

Another possibility of improvement lies in the
incorporation of microbial community in the model.
No current models account for the role of various
microbial communities in soil CH4 processes. In part,
this is because, for all the extreme diversity of the soil
microbial communities, they also show high spatial
and temporal variability. Few microbes are cultivable
under current laboratory regimes and their physiolo-
gical capabilities therefore remain unknown. The
above issues make the parameterization of microbial
data challenging (Nazaries et al 2013a). Nowadays, all
the information on microbial communities is impli-
citly contained in the other model parameters.
Besides, a number ofmethanotrophy-related effects in
soils can only be explained using microbiological data.
For example, the decreasing of maximal soil free
methanotrophs CH4 oxidation rate with depth
(Crill 1991, Czepiel et al 1995) can be associated with
the reduction of the methanotrophs biomass (Bender
and Conrad 1992). This can be related to the down-
ward reduction of methane concentrations in the soil
profile, i.e. lower substrate amount leads to lower
methanotroph biomass.

The differences in the maximal rate of CH4 oxida-
tion by soil free methanotrophs between different soil
types may be related to the variability in the methano-
trophs community species composition (Knief
et al 2003, Nazaries et al 2013a, 2013b). In that case,

Figure 4.Measured and predicted values of CH4fluxes formixed deciduous-conifer forest (Crill 1991). The error bars formodel
experiments are calculated frombootstrapping (see themethods section) and indicate±1 SD. The error bars formeanmeasured
fluxes denote 99% confidence intervals. For details ofmodel experiments see table 5.
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providing the lack of experimental data, the best
approach would be to search for significant correla-
tions between the methanotroph communuity struc-
ture and the climatic, soil and vegetation community
features. Here, one should eliminate the effects of the
other factors (temperature, soil moisture and root bio-
mass). If significant dependencies are found, they can
be used to forecast the response of the CH4 consump-
tion on global climatic changes.

5. Conclusions

The factors controllingCH4 consumption show effects
on different temporal and spatial scales and confound
each other. The necessity to take into account the
combined effects of different interacting controls on
soil methane consumption motivated the formulation
of the newprocess-basedmodel in the current study.

Both the data obtained by the authors and those
adopted from literature equivocally indicate that the
inclusion of rhizospheric methanotrophy significantly
improves correlation between observed and predicted
methane fluxes. Numerical experiments show that
this improvement does not depend on the values of
microbiological parameters used in the model.
Comparison with the Crill (1991) data showed that,
without root methanotrophy, one cannot achieve quan-
titative correspondence between the observed and pre-
dictedfluxes.

Important limitations in model validation origi-
nated from the root biomass not being estimated from
field data and the maximal rate of CH4 oxidation by
soil free and rhizospheric methanotrophs not being
measured directly in the studied ecosystems. There-
fore, one cannot state that exactly the rhizospheric
methanotrophy explains the observed variability in
the CH4 uptake. Nevertheless, it should be noted that
the process explaining this variability is related to the
other, ecologically different, group of methanotrophs.
The key difference is that activity of this methano-
trophs group correlates with the plant root biomass,
which is not the case with the soil free methanotrophs.

The most obvious explanation here is the activity of
rhizosphericmethanotrophs.

The revealed relationship may have important
consequences in the future research into upland soil
methane sink. First, collars for methane flux chamber
measurements are often placed in the areas completely
devoid of or sparsely covered with vegetation, to sim-
plify their installation. That might lead to under-
estimation of consumption. Second, global climatic
changes might show effects on the methane sink in
soils also via vegetation community changes. Third,
the rhizospheric methanotrophs live in different eco-
logical conditions compared with the free soil metha-
notrophs. For that reason, their response to the change
in soil properties would be different, too. Fourth, the
methanotrophic consortium associated with the plant
roots would differ from that of the soil free methano-
trophs in terms of species composition. Consequently,
that consortium might have different ecological
characteristics. The latter is important for the
perspective inclusion of microbial data in models for
improved prediction of CH4 flux from terrestrial
ecosystems.
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AppendixA. Test site descriptions

The forest site (FS) is a the coniferous spruce-pine-fir
forestwithPicea abies, Pinus sibirica andAbies sibirica in
woody layer, Prunus padus, Caragana arborescens and
Rubus idaeus in a shrub layer andEquisetum sylvaticum,

Figure A1.Mapof test sites on a Landsat satellite image.
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Aegopodium podagraria, Oxalis acetosella, Agrimonia
pilosa, Urtica dioica, Glechoma hederacea, Vicia sylva-
tica, Aconitum septentrionale, Maianthemum bifolium
and other species in an understory. Site G1 is mesophilic
grassland with Cirsium vulgare, Galium spurium,
Phleum pratense, Stellaria media, Ranunculus acris,
Achillea millefolium as dominant species. Site G2 is a
mesophilic grasslandwith a sparsebirch (Betulapendula)
cover, Caragana arborescens and Rubus idaeus in the
shrub layer and Chamerion angustifolium, Filipendula
ulmaria, Cirsium arvense, Rumex confertus, Dactylis
glomerata, Phleum pratense and others comprising the
grass layer. All sites are shownonfigureA1.

Appendix B. Exponential regression for
methane consumption

When measuring the rate of soil-to-atmosphere gas
emission, it is usually assumed that gas concentration
in the chamber increases linearly (Boeckx et al 1996,
Alm et al 1999, Altor and Mitsch 2008, Sabrekov
et al 2014). However, the situation changes dramati-
cally when gas sink in soil is concerned.

At high oxygen concentration, which is true within
the chamber during the measurement, the rate of
methane oxidation (Roxid, mg m−3 h−1) in the chamber
headspace can be described by Michaelis–Menten-type
equation:

( )= -
⋅

+
R

V C

K C
B1

m
oxid

max

where Vmax (mg m−3 h−1) is the maximum rate of
methane oxidation, C (mg m−3) is the methane concen-
tration, Km (mg m−3) is the methane concentration
corresponding to half the maximum oxidation rate. The
Michaelis–Menten-type equations are frequently applied
in methane oxidation studies—see e.g. Czepiel et al
(1995), King (1997), Chiemchaisri et al (2001), De
Visscher et al (2001). However, it would be reasonable to
use a simpler approach here. As atmospheric methane
concentration is much less than Km (Bender and
Conrad 1992, Czepiel et al 1995, Knief et al 2003, Knief
andDunfield 2005), (B1) canbe rewritten as

( )» - ⋅R k C B2oxid

where k=Vmax/Km. Thus, first-order kinetics is
obtained, which is characterized by exponential
decrease of concentrationwith time (t):

( ) ( )= ⋅ - ⋅C C k texp B30

where С0 (mg m−3) is the initial concentration in the
chamber headspace. King andAdamsen (1992) andKing
(1994) provided experimental evidence of methane
oxidation being described by first-order kinetics in pure
cultures of methanotroph Methylomoas rubra and in
methanotroph associations on roots and rhizomes of
aquatic vegetation. This was true even when methane
oxidation equalled 56 times the mean atmospheric level.
Boeckx et al (1996) showed the same for soil, albeit at
only 6 times the atmospheric level. Chan and Parkin

(2000) state that the first-order kinetics is still observed at
methane concentrations exceeding 7000 times the mean
atmosperic level; however, it is not readily seen in the
experimental results they provide. It was shown for
Methylomoas rubra that the kinetics approach zero-order
type already at the 5600-fold excess. Moreover, King
(1994) showed that in associations of methanotrophs on
roots and rhizomes of aquatic vegetation, zero-order
kinetics is obserrvable at as low as 560-fold excess. First-
order kinetics in methane oxidation is also postulated in
Jensen and Olsen (1998), Curry (2007) and many other
studies.

Therefore, as the exponential law of concentartion
decrease in a chamber should be used, regardless of the
time interval length, non-linear equation parameters
С0 and k from (B3) should be determined. However,
determination of the (B3) parameters does not directly
lead to the surface flux density magnitude. The net
methane flux in soil ( F, mgm−2 h−1)may be found as

( ) ( )= ⋅ = - ⋅ ⋅F V R S V S k C B4Aoxid

where V (m3) is the chamber volume, S (m2) the
chamber base area (or collar area), CA (mg m−3)
atmospheric methane concentration.CA is substituted
into the linear approximation of Roxid, as microbial
consumption of methane in real field measurements
occurs at this value ofmethane concentration. In order
to find the parameters in (B3), a logarithmic transfor-
mation can be performed to obtain

( ) ( ) ( )= - ⋅C C k tln ln B50

After a substitution у=ln(С) the parameters of
(B5) can again be found using the linear least squares
method (Ryan 1997). In (B5) the sum of squared resi-
duals for the transformed values ln(С) and the calcu-
lated values ln(Со)−k·t is minimized. Note that it is
not the sum of squared residuals for the measured
values С and the corresponding calculated ones. Thus
the resulting parameter values do not satisfy the least
squares principle (Vernin and Chanon 1986) and may
serve as only thefirst approximation.

Improved parameter estimates can be obtained by
introducing theweights (wi). Substituting

(С) ( )j=y B6

it appears reasonable to introduce theweights as

( )j
=

-

=

⎜ ⎟⎛
⎝

⎞
⎠w

C

d

d
B7i

C C

2

i

where Ci (mg m−3) is chamber headspace concentra-
tionsmeasured inmoments ti. Using (B6–B7), weights
for (B5) can be found as

( ) ( )= =
-

=

⎜ ⎟⎛
⎝

⎞
⎠w

C

C
C

d ln

d
B8i

C C

i

2
2

i

However, even as the weights are introduced, there is
no guarantee that the weighted linear regression for
(B5) would yield correct parameter values of the
original nonlinear equation (B3). In order to avoid this
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TableC1.The list ofmodel parameters.

Parameter Description Value Units Reference

a0 Coefficients of the dependency of themaximalmethane oxidation rate on

soilmoisture (qwhc,%of themaximalwater holding capacity): (a2
qwhc
2 +a1 qwhc+a0)/amax

−0.946±0.018 Czepiel et al (1995),Whalen andReeburgh (1996), Bowden et al (1998); amax

was chosen so that the function ranges between 0 and 1

a1 7.785±0.663
a2 −8.146±0.598
amax 0.914

b0 Coefficients of the dependency ofmaximalmethane oxidation rate on soil

temperature (Ts): exp(b2Ts
2+b1Ts+b0)/bmax

−3.695±0.463 Glagolev (2004, 2006); bmax was chosen so that the function ranges between

0 and 1

b1 0.149±0.010 °С−1

b2 −0.0029±0.0003 °С−2

bmax 0.1668

c Recalculation coefficient from gО2 to gС-СО2 0.375

CCH ,atm4 Atmospheric concentration of CH4 0.0012 g m−3 measured value

CO ,atm2 Atmospheric concentration ofО2 277 g m−3

d1 Empirical coefficients governing the sensitivity of gaseous diffusion in soil

pores to soil clay content

15.9±3.1 Clapp andHornberger (1978)

d2 2.91±0.36
D0,CH4

Diffusion coefficient for CH4 in the air at 0 °С 0.0684 m2 h−1 Arah and Stephen (1998)
D0,O2

Diffusion coefficient forO2 in the air at 0 °С 0.0648 m2 h−1 Arah and Stephen (1998)
dw water density 1000 kg m−3

Kox,O2 MichaelisО2-constant formethanotrophs 33.1±33.1 g m−3 Bender andConrad (1994)

Kr,CH4 Michaelis CH4-constant for rhizosphericmethanotrophs 0.079±0.017 g m−3 Gerard andChanton (1993), King (1994)
Kresp,O2 Michaelis constant for root and soil respiration 13.0±3.0 g m−3 Saglio et al (1984)

Ks,CH4 Michaelis CH4-constant for soilmethanotrophs 0.012±0.036 g m−3 Bender andConrad (1992), Czepiel et al (1995), Knief et al (2003), Knief and
Dunfield (2005)

p Root-shoot ratio 4.5±1.3 (forest) kg dwa/kg dw Mokany et al (2006)
2.1±1.6 (grassland); Titlyanova et al (1999)

Q l10, Van’t Hoff temperature dependence coefficient for aboveground biomass

respiration

2.5±0.5 Tjoelker et al (2001b), Atkin et al (2005)

Q r10, Van’t Hoff temperature dependence coefficient for root respiration 3.0±1.6 Boone et al (1998), Fitter et al (1998),Widén andMajdi (2001), Tjoelker et al
(2001a), Hunt et al (2004), Tjoelker et al (2005), Bahn et al (2006)

Q s10, Van’t Hoff temperature dependence coefficient for soil respiration 2.4±1.7 Hendrickson andRobinson (1984), Kirschbaum (1995), Pöhhacker and
Zech (1995),Winkler et al (1996), Reichstein et al (2000), Fierer et al
(2003), Fang et al (2005), Rasmussen et al (2006), Curiel Yuste et al (2007)

Vl,resp Maximal rate of aboveground biomass respiration at 20 °С 1.32±1.44 gО2/kg dw/h Collier (1996), Reich et al (1998), Tjoelker et al (2001b), Tjoelker et al (2005)
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TableC1. (Continued.)

Parameter Description Value Units Reference

Vlit,CH4 Maximal rate of CH4 oxidation bymethanotrophs in the litter (9.1±1.7)·10-6 gCH4/kg dw

soil/h

Whalen et al (1992), Bowden et al (1998), Gulledge and Schimel (1998)

Vlit,resp Maximal rate of litter respiration at 20 °С 0.039±0.018 gО2/kg dw

soil/h

Hendrickson andRobinson (1984),Meentemeyer andBerg (1986), Pöh-
hacker andZech (1995), Colpaert andTichelen (1996), Strickland
et al (2009)

Vmin ,CH4 Maximal rate of CH4 oxidation bymethanotrophs inmineral soil layers (2.2±5.7)·10−6 gCH4/kg dw

soil/h

Bender andConrad (1992), Czepiel et al (1995), Bowden et al (1998), Knief
et al (2003)

Vmin,resp Maximal rate ofmineral soil layer respiration at 20 °С 0.066±0.16 gО2/kgС/h The same as forQ10,s

Vr,CH4 Maximal rate of CH4 oxidation by rhizosphericmethanotrophs 0.031±0.016 gCH4/kg

dw/h

Gerard andChanton (1993), King (1994)

Vr,resp Maximal rate of root respiration at 20 °С 0.52±0.16 gО2/kg dw/h The same as forQ10,r

zlit the lower bound of litter layer at the forest and grassland sites FS 0.04 m measured value

G1 andG2 0.01

zmax the lower boundarywhere significantmethane oxidation occurs 0.35±0.11 m Bender andConrad (1992),Whalen et al (1992), Priemé andChristensen

(1997), Jensen andOlsen (1998)

a dw—dryweight.
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uncertainty we use a nonlinear regression (function
nlinfit inMATLAB) tofind parameter values in (B3).

AppendixC.Detailedmodel description

The model is designed to couple the processes of
consumption and transport of oxygen andmethane in
the gaseous phase in the pore space of aerated soils.
The parameters of the below relationships are pre-
sented in table C1. They were adopted from previous
studies describing identical or similar ecosystems or
soil types (see the references in table C1). If alternative
values were reported in several studies, their average
value±standard deviationwas used.

It is assumed that the soil pore space does not
become totally saturated with water, and the water films
are not interconnected (probably, with the exception of
the snowmelt periodwhich is not included in this study).
Thus, we do not consider gas transport in the liquid
phase, as it is negligibly small compared with gas-phase
transport in the conditions described above (Moldrup
et al 2000). Methane was allowed to be consumed by two
groupsofmethanotrophs: those living onplant roots and
those inhabiting the soil, but not associated with the rhi-
zosphere (termed ‘rhizospheric’ and ‘soil’ methano-
trophs fromnowon, correspondingly).

We formulate the general equation describing the
transport and sink ofmethane in gaseous phase as:

( )
( ) ( ) ( )= -

¶
¶

- -
F z

z
R z R z0 C1CH

r ox s ox, ,
4

where ( )F zCH4
(gm−2 h−1) the transport term, ( )R zr ox,

and ( )R zs ox, (gm−3 h−1) the rates ofmethane consump-
tion by root-associated and soil free methanotrophs
respectively, z (m) the spatial coordinate (positive down-
ward) and t (h) the time. The equation for oxygen (C2) is
fully analogous: diffusion in gaseous phase is only
considered, and uptake is allowed by both the plant roots
and themicroorganisms inhabiting the soil.

( )
( ) ( ) ( )= -

¶
¶

- -
F z

z
R z R z0 C2r s

O
,resp ,resp

2

where ( )F zO2
(g m−2 h−1) the transport term,

( )R zr,resp and ( )R zs,resp (g m−3 h−1) the rates of root
and soil respiration, respectively. For the top boundary
(soil surface, 0 m), Dirichlet-type boundary condition
was assumed for both gases:

∣ ( )==C C aC1zCH 0 CH ,atm4 4

∣ ( )==C C aC2zO 0 O ,atm2 2

where CCH4
and CO2

(g m−3) are the methane and
oxygen concentrations in soil gaseous phase respectively,
CCH ,atm4

and CO ,atm2
(g m−3) the atmospheric methane

and oxygen concentrations respectively. For the bottom
boundary (soil depth of 1m), Neumann-type boundary
condition was assumed for both gases, because for the
soil depth about 1m gradient of methane and oxygen
concentrations in aerated soils are very small (Whalen
et al1992,Renault andStengel 1994):

( )
¶
¶

=
=

C

z
b0 C1

z

CH

1

4

( )
¶
¶

=
=

C

z
b0 C2

z

O

1

2

Diffusion is the only gas transport mechanism that
is important in aerated soils (Striegl 1993), which is
reflected in (3) and (4):

( ) ( ) ( )= - ⋅
¶
¶

F z D z
C

z
C3CH CH

CH
4 4

4

( ) ( ) ( )= - ⋅
¶
¶

F z D z
C

z
C4O O

O
2 2

2

where ( )D zCH4
and ( )D zO2

(m2 h−1) are the diffusiv-
ities for methane and oxygen respectively. Those are
traditionally obtained by multiplying the gaseous
tracer diffusivity in air (with the air temperature
dependency) by the reducing coefficient describing the
soil properties. Many ways to calculate this coefficient
exist, depending on different soil properties (Moldrup
et al 2000). However, more detailed coefficient calcul-
ation schemes would require an amount of field
measurement data that are usually unavailable. There-
fore, calculation of diffusivity according to Moldrup
et al (2003)was used as in (C5) and (C6):

( ) ( ( ) )

( ) ( )
( )

( )e
e

= ⋅ +

⋅ ⋅
F

⎛
⎝⎜

⎞
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D z D T z
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z
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273 1
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s

a
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CH 0,CH
1.82

2
3 cl

4 4

( ) ( ( ) )

( ) ( )
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⋅ ⋅
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D z D T z

z
z

z

273 1

C6

s

a
a

B

O 0,O
1.82

2
3 cl

2 2

where D0,CH4
and D0,O2

(m2 h−1) are the gaseous
methane and oxygen diffusivities in air at 0 °C, ( )T zs

(°C) is a soil temperature, ( )e za (m3m−3) the air-filled
porosity, ( )F z (m3 m−3) is the total soil porosity (see
(C8)), Bcl (unitless) is the coefficient defining the effect
of the experimentally determined clay fraction fclay

(unitless) on the diffusion rate in the pore space
according to the Clapp and Hornberger (1978) para-
meterization in (C7):

( )= ⋅ +B d f d C7cl 1 clay 2

where d1 and d2 (unitless) are empirical coefficients
presented in table C1. Air filled porosity and total
porosity were calculated according to Shein (2015)
from the water density dw (kgm

−3), experimental data
on soil density ( )d zs (kg m−3), soil solid phase density

( )d zs s, (kg m−3) and soil moisture ( )m zs (gH2O g−1

dry soil), as in (8) and (9):

( ) ( )
( )

( )F = -z
d z

d z
1 C8s

s s,

( ) ( ) ( ) ( ) ( )e = F - ⋅z z m z
d z

d
C9a s

s

w

The effect of oxygen and methane concentrations
on the rate ofmethane consumptionwas describedwith
a Michaelis–Menten function. Methane consumption
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rate by the rhizospheric methanotrophs was calculated
as in (C10):

( ) ( ( )) ( ( )) ( )

( )

= ⋅ ⋅ ⋅

⋅ ⋅
+

⋅
+

R z V f T z f m z RD z

B
C

K C

C

K C

C10

r ox r s s

r
r ox

, ,CH

CH

,CH CH

O

,O O

4

4

4 4

2

2 2

where Vr,CH4
(g CH4 kg

−1 root dry matter h−1) is the
maximal rate of CH4 oxidation by rhizospheric
methanotrophs, ( ( ))f T zs (unitless) the temperature

dependency function of methane oxidation varying
from 0 to 1, ( ( ))f m zs (unitless) the soil moisture
dependency function of methane oxidation varying
from 0 to 1, RD(z) (m−1) the root density distribution
in the soil profile calculated according to Jackson et al
(1996),Br (kg root drymatterm−2) is the total biomass
of the living roots, Kr,CH4

and Kox,O2
(g m−3) the

Michaelis constants (themethane and oxygen concen-
trations at which the methane oxidation rate by
rhizospheric methanotrophs is at half-maximum).
The total mass of the living roots was calculated from
the root-to-shoot ratio p (kg root dry matter kg−1

shoot drymatter) and the aboveground biomass Bs (kg
shoot drymatterm−2):

= ⋅B p Br s

Bs can be expressed as

where TR (gC-CO2 m−2 h−1) is the measured total
ecosystem respiration (for FS—total respiration of soil
andmoss-grass layer), c (gC-CO2 g

−1O2) the recalcula-
tion coefficient from gO2 to gC-CO2 (ratio of molar
masses), i the soil horizon index, n the number of
horizons, zi and zi+1 the upper and the lower boundary
of a horizon, correspondingly, V ,l,resp Vr,resp and Vs,resp

(gO2 kg−1 dry matter or dry soil h−1) the maximal
rates of aboveground biomass, root biomass and soil
respiration respectively at 20 °C, Q ,l10, Q ,r10, Q s10,

(unitless) the temperature dependency coefficients
estimating change of aboveground biomass, root
biomass and soil respiration respectively as a

consequence of increasing the temperature by 10 °C,
Ta (°C) the measured air temperature. The numerator
in (C11) contains the difference between the total
ecosystem respiration and the calculated respiration of
soil microorganisms and roots at the measured soil
temperature. The denominator represents the calcu-
lated respiration rate by unit of the aboveground
biomass at the measured air temperature. The final
expression forBr is:

The soilmoisture dependency for both components of
methane consumption was taken into account as a
dimensionless coefficient ranging between 0 and 1:

( ( )) ( )
( )

= ⋅ + ⋅ +f m z a m a m a a

C13
s whc whc2

2
1 0 max

where a0, a1, a2, amax (unitless) are the empirical
coefficients presented in table C1 andmwhc (unitless) the
relation between the soil moisture ms (gH2O g−1 soil)
and the maximal soil water holding capacity WHC
(gH2Og−1 soil):

( )
( )

( )= ⋅m
m z

WHC z
100% C14whc

s

Maximal soil water holding capacity was calculated
according to Shein (2015) from the total porosity, the
soil bulk density and thewater density:

( ) ( ) ( ) ( )= F ⋅WHC z z
d z

d
C15s

w

The temperature dependence for both methane
consumption groups was also derived as a dimension-
less coefficient ranging between 0 and 1:

( ( )) ( ( ( )) ( ( )) )
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=
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C16
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where bmax (unitless), b0 (unitless), b1 (°C−1), b2
(°C−2) are the empirical coefficients presented in table
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C1.Methane oxidation by the free soil methanotrophs
was taken into account in a similar way as the
oxidation by the rhizosphericmethanotrophs:

( ) ( ( )) ( ( )) ( )

( )

= ⋅ ⋅ ⋅

⋅
+

⋅
+

R z V f T z f m z d z

C

K C

C

K C

C17

s ox s s s s

s ox

, ,CH

CH

,CH CH

O

,O O

4

4

4 4

2

2 2

where Vs,CH4
(gCH4 kg

−1 dry soil h−1) is the maximal
methane consumption rate by soil methanotrophs,
Ks,CH4

(gCH4 m−3) the Michaelis constant (the
methane concentration at which the oxidation rate by
soil free methanotrophs is at half-maximum). Vs,CH4

was adopted individually (see table C1) for the litter
Vlit,CH4

(gCH4 kg
−1 dry soil h−1) and the mineral soil

layerVmin,CH4
(gCH4 kg

−1 dry soil h−1):

( ) ( )


= < <
>

⎧
⎨⎪
⎩⎪

V z

V z z

V z z z

z z

if

if

0 if

C18s,CH

lit,CH lit

min,CH lit max

max

4

4

4

where zlit (m) is the lower boundary of the litter layer
and zmax (m) the upper boundary where significant
methane oxidation first occurs according to literature
data. Due to lack or ambiguity of data on vertical
profile of maximal methane sink in soil, it was
described with a step-function: Vmin,CH4

is constant
above zmax and zero below zmax.

The rate of root respiration was also calculated
using the above expression for live root biomass and
the data on root depth distribution:

( ) ( )

( )

( ( ) )= ⋅ ⋅
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-R z V Q RD z

B
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where Kresp,O2
(gO2 m

−3) is the Michaelis constant for
respiration.

The soil respiration rate, or, strictly speaking, the
heterotrophic respiration of soil microbial commu-
nity was calculated in a similar fashion:

( )
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( ( ) )= ⋅
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Maximal soil respiration rate at 20 °C was adopted
individually for the litter andmineral soil layers:

( )
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

=
⋅ >

⎪

⎪

⎧
⎨
⎩

V z
V z z

V C z z z
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where, Vlit,resp (gO2 kg
−1 dry soil h−1) is the maximal

litter respiration rate at 20 °C, Vmin,resp (gO2 kg
−1 soil

C h−1) the maximal soil respiration rate at 20 °C and
Corg(z) (kg soil C kg−1 dry soil) the soil organic content
at depth z.

The calculations were performed for the soil layer
between 0 m and 1m depths. Methane flux (mgCH4

m−2 h−1) was calculated using gradient approach
from the methane concentration profile in the soil
(Walter et al 1996, Zhuang et al 2004):

( )
( ) ( )

( )

= ⋅
-

F D
C C

0.005
0.01 0

0.01
C22

surf,CH CH
CH CH

4 4

4 4

The physical and chemical properties of the soil
profiles involved in the analysis are presented in
appendix D (table D1). Measured values of total eco-
system respiration (for FS—total respiration of soil
andmoss-grass layer), soil temperature and soilmoist-
ure are shown in table 3. Bootstrapmethod (Efron and
Tibshirani 1986) was used to estimate the uncertainty
of modeled fluxes. Artificial errors were introduced
into eachmodel parameter using their standard devia-
tions obtained from literature data (see table C1).
Then, the ‘noisy’ fluxes were calculated using these
‘noisy’ parameter values. Uncertainty was estimated
based on 1000 such iterations for each individual pre-
dicted flux value. Model sensitivity to uncertainty in
groups of parameters was calculated in the same way:
artificial errors were introduced into eachmodel para-
meter of a certain group while other parameters
remain constant.

AppendixD

TableD1.The physical and chemical properties of the soil profiles.

Horizon Boundaries,m

Bulk den-

sity,

kgm−3

Solid phase

density,

kgm−3 Corg,%

FS, Cambisol (main soil-forming processes—clay formation, in situ

weathering in horizonB)

O 0–0.04 0.07a 0.35a 52.5

A 0.04–0.10 1.10 2.54 2.7

ABq 0.10–0.30 1.32 2.57 1.1

Bg 0.30–0.57 1.43 2.63 0.8

Cg 0.57–1.00 1.53 2.71 0.6

G1 andG2, Luvisol (main soil-forming processes—clay illuvial

migration and accumulation, leaching of loess parentmaterial)

O 0–0.01 0.07a 0.35a 45.5

A 0.01–0.10 0.87 2.13 5.4

AE 0.10–0.20 1.11 2.43 2.1

E 0.20–0.33 1.22 2.44 1.9

Btq 0.33–0.51 1.37 2.46 0.8

BCk 0.51–0.87 1.45 2.49 0.7

Ck 0.87–1.00 1.47 2.44 0.3

a From (Gadzhiev 1982).
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Appendix E

Table E1.CH4flux andTR for forests and grasslands ofWest Siberian south taiga (numbers of chamber sites correspond to table 3).

Temperature of, °C

CH4flux,

mgCH4

m−2 h−1
TR, gC-CO2

m−2 h−1 Soil at depth, cm
Moisture at depth (cm),

mean±standard deviation,%

№ Date Mean Erra Mean Erra air 0 5 10 15(40)b 5 10 15

Forest

1 23.07 −0.03 0.09 0.20 0.01 15.0 15.8 16.0 15.2 14.7 36±5 39±8 44±18
−0.08 0.32 0.18 0.01 14.3 15.1 15.5 15.0 14.5

0.31 0.01
−0.06 0.04 0.27 0.01 14.1 14.7 15.4 14.4

0.26 0.01

0.32 0.07
−0.05 0.08 0.23 0.01 14.0 14.5 15.0 14.6 14.0

0.24 0.03
0.27 0.01

0.25 0.05
2 26.07 −0.04 0.24 0.21 0.01 20.4 21.0 16.4 13.5 n.d.c 35±6 32±5

−0.09 0.06 0.20 0.01 20.5
−0.02 0.42 0.19 0.01 22.6 16.6 13.7 13.7

−0.07 0.10 0.22 0.01 17.7 18.2 16.1 13.5
3 29.07 −0.03 0.15 0.23 0.01 15.7 15.8 n.d. 13.8 12.5 n.d. 37±18 30±11

−0.02 0.15 0.34 0.01 13.9
0.01 0.09 0.00 0.00

−0.08 0.08 0.29 0.08 20.1 18.1 15.5 13.0 13.0
−0.07 0.08 0.23 0.02 20.6 18.9 16.0 13.2

4 1.09 −0.08 0.08 n.d. 21.6 20.3 14.0 12.6 11.9 36±3 25±4 28±4
−0.10 0.39 20.1 19.5 12.5 11.7

−0.13 0.10 20.4 12.9 12.0
−0.17 0.12 0.23 0.03 21.3 20.3 12.5 11.7 41±10 35±4 30±5
−0.13 0.07 0.40 0.04 20.1 19.4 11.8
−0.11 0.05 0.30 0.04 20.0 19.2 13.0 12.0

−0.11 0.07 n.d. 21.2 20.3 12.5 11.7 48±11 25±4 21±1
−0.07 0.19 20.1 19.4 11.8

−0.13 0.06 20.0 19.2 13.0 12.0
−0.11 0.22 21.6 20.3 12.6 11.9 50±10 45±6 28±4
−0.07 0.01 20.1 19.5 12.5 11.7
−0.11 0.06 20.4 12.9 12.0

5 2.09 −0.13 0.07 0.17 0.05 10.8 10.4 11.0 n.d. 10.6 33±3 32±5 26±8
−0.13 0.03 0.27 0.07 8.2 10.4

6 2.09 −0.11 0.03 0.19 0.01 10.6 10.3 11.0 10.5 25±10 25±7 25±2
−0.13 0.03 0.22 0.01 8.2 8.2 10.4

Grasslands

7 8.08 −0.04 0.11 0.29 0.03 23.1 21.4 12.9 12.6 12.0 n.d. 16±2 14±1
−0.02 0.12 0.34 0.01 18.2 19.3 13.5 13.0
−0.03 0.20 0.26 0.01 14.5 17.6 13.1

−0.03 0.29 0.27 0.01 23.3 21.5 12.9 12.6
−0.01 0.03 0.28 0.02 18.3 19.3 13.5 13.0

−0.04 0.02 0.26 0.01 14.7 17.7 13.2 13
8 9.08 −0.08 0.13 0.04 0.01 19.5 18.7 14.3 13.7 12.7 14±2 9±0 9±1

−0.12 0.13 0.41 0.01 35.0 24.4 14.6 13.6
−0.01 0.19 0.34 0.01 20.2 17.4 15.0 14.0 13.0

−0.03 0.24 0.35 0.02
−0.10 0.21 0.29 0.05 19.5 18.7 14.2 13.7 12.7

a For positive fluxes: standard deviation of flux value given from uncertainty of linear regression parameters; for negative fluxes: confidential

interval for 95%.
b 40 cm formeasurements at 28.07, 15 cm for other.
c n.d.=no data.
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