10 research outputs found

    Legislative Documents

    Get PDF
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Novel Biotechnological Approaches for the Recovery of Metals from Primary and Secondary Resources

    No full text
    Microorganisms have developed various mechanisms to deal with metals, thus providing numerous tools that can be used in biohydrometallurgical processes. “Biomining” processes—including bioleaching and biooxidation processes—facilitate the degradation of minerals, accompanied by a release of metals. These processes are especially attractive for low-grade ores and are used on an industrial scale mainly for sulfidic ores. In biosorption processes, biomass or certain biomolecules are used to bind and concentrate selected ions or other molecules from aqueous solutions. Biosorptive materials can be an environmentally friendly and efficient alternative to conventional materials, such as ion exchange resins. Other interesting mechanisms are bioaccumulation, bioflotation, bioprecipitation, and biomineralisation. Although these processes are well-known and have been studied in detail during the last decades, the recent strong progress of biotechnologies (e.g., genetic engineering and molecule design), as well as their combination with novel developments in material sciences (e.g., nanotechnologies) facilitate new strategies for the application of biotechnologies in mineral processing. The article gives a summary of current activities in this field that are being performed in our group

    Characterization of the Binding Behavior of Specific Cobalt and Nickel Ion-Binding Peptides Identified by Phage Surface Display

    No full text
    In recent years, the application focus of phage surface display (PSD) technology has been extended to the identification of metal ion-selective peptides. In previous studies, two phage clones—a nickel-binding one with the peptide motif CNAKHHPRCGGG and a cobalt-binding one with the peptide motif CTQMLGQLCGGG—were isolated, and their binding ability to metal-loaded NTA agarose beads was investigated. Here, the free cyclic peptides are characterized by UV/VIS spectroscopy with respect to their binding capacity for the respective target ion and in crossover experiments for the other ion by isothermal titration calorimetry (ITC) in different buffer systems. This revealed differences in selectivity and affinity. The cobalt-specific peptide is very sensitive to different buffers; it has a 20-fold higher affinity for cobalt and nickel under suitable conditions. The nickel-specific peptide binds more moderately and robustly in different buffers but only selectively to nickel

    Characterization of the Binding Behavior of Specific Cobalt and Nickel Ion-Binding Peptides Identified by Phage Surface Display

    No full text
    In recent years, the application focus of phage surface display (PSD) technology has been extended to the identification of metal ion-selective peptides. In previous studies, two phage clones—a nickel-binding one with the peptide motif CNAKHHPRCGGG and a cobalt-binding one with the peptide motif CTQMLGQLCGGG—were isolated, and their binding ability to metal-loaded NTA agarose beads was investigated. Here, the free cyclic peptides are characterized by UV/VIS spectroscopy with respect to their binding capacity for the respective target ion and in crossover experiments for the other ion by isothermal titration calorimetry (ITC) in different buffer systems. This revealed differences in selectivity and affinity. The cobalt-specific peptide is very sensitive to different buffers; it has a 20-fold higher affinity for cobalt and nickel under suitable conditions. The nickel-specific peptide binds more moderately and robustly in different buffers but only selectively to nickel

    Algae-Silica Hybrid Materials for Biosorption of Heavy Metals

    No full text

    Directed Evolution and Engineering of Gallium-Binding Phage Clones—A Preliminary Study

    No full text
    The phage surface display technology is a useful tool to screen and to extend the spectrum of metal-binding protein structures provided by nature. The directed evolution approach allows identifying specific peptide ligands for metals that are less abundant in the biosphere. Such peptides are attractive molecules in resource technology. For example, gallium-binding peptides could be applied to recover gallium from low concentrated industrial wastewater. In this study, we investigated the affinity and selectivity of five bacteriophage clones displaying different gallium-binding peptides towards gallium and arsenic in independent biosorption experiments. The displayed peptides were highly selective towards Ga3+ whereby long linear peptides showed a lower affinity and specificity than those with a more rigid structure. Cysteine scanning was performed to determine the relationship between secondary peptide structure and gallium sorption. By site-directed mutagenesis, the amino acids of a preselected peptide sequence are systematically replaced by cysteines. The resulting disulphide bridge considerably reduces the flexibility of linear peptides. Subsequent biosorption experiments carried out with the mutants obtained from cysteine scanning demonstrated, depending on the position of the cysteines in the peptide, either a considerable increase in the affinity of gallium compared to arsenic or an increase in the affinity for arsenic compared to gallium. This study shows the impressive effect on peptide−target interaction based on peptide structure and amino acid position and composition via the newly established systematic cysteine scanning approach

    Nested Formation of Calcium Carbonate Polymorphs in a Bacterial Surface Membrane with a Graded Nanoconfinement : An Evolutionary Strategy to Ensure Bacterial Survival

    No full text
    It is the intention of this study to elucidate the nested formation of calcium carbonate polymorphs or polyamorphs in the different nanosized compartments. With these observations, it can be concluded how the bacteria can survive in a harsh environment with high calcium carbonate supersaturation. The mechanisms of calcium carbonate precipitation at the surface membrane and at the underlying cell wall membrane of the thermophilic soil bacterium Geobacillus stearothermophilus DSM 13240 have been revealed by high-resolution transmission electron microscopy and atomic force microscopy. In this Gram-positive bacterium, nanopores in the surface layer (S-layer) and in the supporting cell wall polymers are nucleation sites for metastable calcium carbonate polymorphs and polyamorphs. In order to observe the different metastable forms, various reaction times and a low reaction temperature (4 °C) have been chosen. Calcium carbonate polymorphs nucleate in the confinement of nanosized pores (⌀ 3-5 nm) of the S-layer. The hydrous crystalline calcium carbonate (ikaite) is formed initially with [110] as the favored growth direction. It transforms into the anhydrous metastable vaterite by a solid-state transition. In a following reaction step, calcite is precipitated, caused by dissolution of vaterite in the aqueous solution. In the larger pores of the cell wall (⌀ 20-50 nm), hydrated amorphous calcium carbonate is grown, which transforms into metastable monohydrocalcite, aragonite, or calcite. Due to the sequence of reaction steps via various metastable phases, the bacteria gain time for chipping the partially mineralized S-layer, and forming a fresh S-layer (characteristic growth time about 20 min). Thus, the bacteria can survive in solutions with high calcium carbonate supersaturation under the conditions of forced biomineralization.publishe

    BIOLEACHING IN STIRRED TANK REACTORS TO PROCESS KUPFERSCHIEFER-TYPE ORE: CURRENT STATUS AND PERSPECTIVES

    No full text
    International audienceIn Europe, most of the primary resources with high or moderate metal grade, reasonable accessibility and easy to process are exhausted. European primary resources still available for exploitation have more complex mineralizations (e.g. polymetallic and polymineral, carbon rich), or low metal contents; they also have higher levels of toxic impurities such as arsenic, antimony and mercury, penalizing current pyrometallurgical technologies. As existing processes and technologies are often not profitable for these types of unconventional resources, new process options still need to be developed in order to overwhelming the complexity of the ore composition while remaining cost effective. In this context, bioleaching is more and more considered as a promising technology. Even though heap and dump bacterial leaching of sulphidic minerals are well established and the bacterial treatment of refractory gold concentrate using stirred tank reactors (STR) is an industrial reality, the European mineral industry is still sceptical and reluctant to adopt biohydrometallurgical techniques. Heap leaching is often considered as un-adapted due to space constraints, slow leaching kinetics and low recovery rate. The possibility of using STR for the treatment of other metals than refractory gold, such as copper sulphides, has already been demonstrated but improvements are still needed to achieve economic viability. The Kupferschiefer deposits host the largest known copper reserve in Europe [1]. These black shale type ores are currently exploited in Poland through pyrometallurgical smelting. In Germany exploration campaigns were recently leaded in order to assess and prepare future exploitation of this ore deposit type. The main copper-bearing minerals are: chalcocite, bornite, chalcopyrite and covellite. This type of ore is also characterized by high amounts of carbonate and organic carbon as well as potentially rich with arsenic (volatile in pyrometallurgical processes). In the last years the ores are characterized by increased As and C contents, and lower Cu contents. It leads to a lower quality concentrate as well as operating and environmental issues during smelting. In this context, several European research projects have been dedicated to the development of new bioleaching approaches as alternative and complementary routes to the conventional smelting methods for the processing of Kupferschiefer ores (BioShale in EC-FP6, ProMine in EC-FP7, BIOMOre). By using a multi-scale approach from molecular techniques to bench-scale small pilot continuous tests, Cu recovery from this type of ores using bioleaching was demonstrated to be technically feasible and efficient. The stirred tank bio-reactor (STR) was shown as the best process option when compared to heap leaching due to the high content of carbonate in the ore.This paper gives an overview of the work performed on this topic in the last decade. The R&D challenges necessary to tackle in order to improve the process economy will be analysed and compared. It will also discuss the new insights and future developments brought by ECOMETALS, a German and French joint research project, for the integration of bioprocess options in the metallurgical treatment of Kupferschiefer ores
    corecore