7 research outputs found

    Two Concepts of Basic Equality

    Get PDF
    It has become somewhat a commonplace in recent political philosophy to remark that all plausible political theories must share at least one fundamental premise, ‘that all humans are one another's equals’. One single concept of ‘basic equality’, therefore, is cast as the common touchstone of all contemporary political thought. This paper argues that this claim is false. Virtually all do indeed say that all humans are ‘equals’ in some basic sense. However, this is not the same sense. There are not one but (at least) two concepts of basic equality, and they reflect not a grand unity within political philosophy but a deep and striking division. I call these concepts ‘Equal Worth’ and ‘Equal Authority’. The former means that each individual’s good is of equal moral worth. The latter means that no individual is under the natural authority of anyone else. Whilst these two predicates are not in themselves logically inconsistent, I demonstrate that they are inconsistent foundation stones for political theory. A theory that starts from Equal Worth will find it near impossible to justify Equal Authority. And a theory that starts from Equal Authority will find any fact about the true worth of things, including ourselves, irrelevant to justifying legitimate action. This helps us identify the origin of many of our deepest and seemingly intractable disagreements within political philosophy, and directs our attention to the need for a clear debate about the truth and/or relationship between the two concepts. In short, my call to arms can be summed up in the demand that political philosophers never again be allowed to claim ‘that all human beings are equals’ full stop. They must be clear in what dimension they claim that we are equals—Worth or Authority (or perhaps something else)

    Liberalism, Contractarianism, and the Problem of Exclusion

    Get PDF

    Culture-Independent and Culture-Dependent Characterization of the Black Soldier Fly Gut Microbiome Reveals a Large Proportion of Culturable Bacteria with Potential for Industrial Applications

    No full text
    Black soldier fly larvae (BSFL) are fast-growing, resilient insects that can break down a variety of organic substrates and convert them into valuable proteins and lipids for applications in the feed industry. Decomposition is mediated by an abundant and versatile gut microbiome, which has been studied for more than a decade. However, little is known about the phylogeny, properties and functions of bacterial isolates from the BSFL gut. We therefore characterized the BSFL gut microbiome in detail, evaluating bacterial diversity by culture-dependent methods and amplicon sequencing of the 16S rRNA gene. Redundant strains were identified by genomic fingerprinting and 105 non-redundant isolates were then tested for their ability to inhibit pathogens. We cultivated representatives of 26 genera, covering 47% of the families and 33% of the genera detected by amplicon sequencing. Among these isolates, we found several representatives of the most abundant genera: Morganella, Enterococcus, Proteus and Providencia. We also isolated diverse members of the less-abundant phylum Actinobacteria, and a novel genus of the order Clostridiales. We found that 15 of the isolates inhibited at least one of the tested pathogens, suggesting a role in helping to prevent colonization by pathogens in the gut. The resulting culture collection of unique BSFL gut bacteria provides a promising resource for multiple industrial applications

    Diet Fermentation Leads to Microbial Adaptation in Black Soldier Fly (<i>Hermetia illucens</i>; Linnaeus, 1758) Larvae Reared on Palm Oil Side Streams

    No full text
    Insects offer a promising alternative source of protein to mitigate the environmental consequences of conventional livestock farming. Larvae of the black soldier fly (Hermetia illucens; Linnaeus, 1758) efficiently convert a variety of organic side streams and residues into valuable proteins, lipids, and chitin. Here, we evaluated the suitability of two palm oil industry side streams—empty fruit bunches (EFB) and palm kernel meal (PKM)—as larval feed, and their impact on the larval gut microbiome. Among 69 fungal species we screened, Marasmius palmivorus, Irpex consors, and Bjerkandera adusta achieved the fastest growth and lignin degradation, so these fungi were used for the pretreatment of 7:3 mixtures of EFB and PKM. Larvae reared on the mixture pretreated with B. adusta (BAD) developed significantly more quickly and reached a higher final weight than those reared on the other pretreatments or the non-fermented reference (NFR). Amplicon sequencing of the BAD and NFR groups revealed major differences in the larval gut microbiome. The NFR group was dominated by facultatively anaerobic Enterobacteriaceae (typical of H. illucens larvae) whereas the BAD group favored obligately anaerobic, cellulolytic bacteria (Ruminococcaceae and Lachnospiraceae). We hypothesize that fungal lignin degradation led to an accumulation of mycelia and subsequent cellulolytic breakdown of fiber residues, thus improving substrate digestibility

    Bioactivity Profiling of In Silico Predicted Linear Toxins from the Ants Myrmica rubra and Myrmica ruginodis

    No full text
    The venoms of ants (Formicidae) are a promising source of novel bioactive molecules with potential for clinical and agricultural applications. However, despite the rich diversity of ant species, only a fraction of this vast resource has been thoroughly examined in bioprospecting programs. Previous studies focusing on the venom of Central European ants (subfamily Myrmicinae) identified a number of short linear decapeptides and nonapeptides resembling antimicrobial peptides (AMPs). Here, we describe the in silico approach and bioactivity profiling of 10 novel AMP-like peptides from the fellow Central European myrmicine ants Myrmica rubra and Myrmica ruginodis. Using the sequences of known ant venom peptides as queries, we screened the venom gland transcriptomes of both species. We found transcripts of nine novel decapeptides and one novel nonapeptide. The corresponding peptides were synthesized for bioactivity profiling in a broad panel of assays consisting of tests for cytotoxicity as well as antiviral, insecticidal, and antimicrobial activity. U-MYRTX-Mrug5a showed moderately potent antimicrobial effects against several bacteria, including clinically relevant pathogens such as Listeria monocytogenes and Staphylococcus epidermidis, but high concentrations showed negligible cytotoxicity. U-MYRTX-Mrug5a is, therefore, a probable lead for the development of novel peptide-based antibiotics

    Depletion of Lipocalin 2 (LCN2) in Mice Leads to Dysbiosis and Persistent Colonization with Segmented Filamentous Bacteria

    No full text
    Lipocalin 2 (LCN2) mediates key roles in innate immune responses. It has affinity for many lipophilic ligands and binds various siderophores, thereby limiting bacterial growth by iron sequestration. Furthermore, LCN2 protects against obesity and metabolic syndrome by interfering with the composition of gut microbiota. Consequently, complete or hepatocyte-specific ablation of the Lcn2 gene is associated with higher susceptibility to bacterial infections. In the present study, we comparatively profiled microbiota in fecal samples of wild type and Lcn2 null mice and show, in contrast to previous reports, that the quantity of DNA in feces of Lcn2 null mice is significantly lower than that in wild type mice (p Lcn2-/- mice, including eight gender-specific deviations. In particular, members of Clostridium, Escherichia, Helicobacter, Lactococcus, Prevotellaceae_UCG-001 and Staphylococcus appeared to expand in the intestinal tract of knockout mice. Interestingly, the proportion of Escherichia (200-fold) and Staphylococcus (10-fold) as well as the abundance of intestinal bacteria encoding the LCN2-sensitive siderphore enterobactin (entA) was significantly increased in male Lcn2 null mice (743-fold, p Lcn2 null mice displayed a high abundance of segmented filamentous bacteria, which are intimately associated with the mucosal cell layer, provoking epithelial antimicrobial responses and affecting T-helper cell polarization

    Venomics of the Central European Myrmicine Ants Myrmica rubra and Myrmica ruginodis

    No full text
    Animal venoms are a rich source of novel biomolecules with potential applications in medicine and agriculture. Ants are one of the most species-rich lineages of venomous animals. However, only a fraction of their biodiversity has been studied so far. Here, we investigated the venom components of two myrmicine (subfamily Myrmicinae) ants: Myrmica rubra and Myrmica ruginodis. We applied a venomics workflow based on proteotranscriptomics and found that the venoms of both species are composed of several protein classes, including venom serine proteases, cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 (CAP) superfamily proteins, Kunitz-type serine protease inhibitors and venom acid phosphatases. Several of these protein classes are known venom allergens, and for the first time we detected phospholipase A1 in the venom of M. ruginodis. We also identified two novel epidermal growth factor (EGF) family toxins in the M. ruginodis venom proteome and an array of additional EGF-like toxins in the venom gland transcriptomes of both species. These are similar to known toxins from the related myrmicine ant, Manica rubida, and the myrmecine (subfamily Myrmeciinae) Australian red bulldog ant Myrmecia gullosa, and are possibly deployed as weapons in defensive scenarios or to subdue prey. Our work suggests that M.rubra and M. ruginodis venoms contain many enzymes and other high-molecular-weight proteins that cause cell damage. Nevertheless, the presence of EGF-like toxins suggests that myrmicine ants have also recruited smaller peptide components into their venom arsenal. Although little is known about the bioactivity and function of EGF-like toxins, their presence in myrmicine and myrmecine ants suggests they play a key role in the venom systems of the superfamily Formicoidea. Our work adds to the emerging picture of ant venoms as a source of novel bioactive molecules and highlights the need to incorporate such taxa in future venom bioprospecting programs
    corecore