435 research outputs found

    Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean

    Get PDF
    Initially a North Atlantic project, the CARINA carbon synthesis was extended to include the Southern Ocean. Carbon and relevant hydrographic and geochemical ancillary data from cruises all across the Arctic Mediterranean Seas, Atlantic and Southern Ocean were released to the public and merged into a new database as part of the CARINA synthesis effort. Of a total of 188 cruises, 37 cruises are part of the Southern Ocean, including 11 from the Atlantic sector. The variables from all Southern Ocean cruises, including dissolved inorganic carbon (TCO2), total alkalinity, oxygen, nitrate, phosphate and silicate, were examined for cruise-to-cruise consistency in one collective effort. Seawater pH and chlorofluorocarbons (CFCs) are also part of the database, but the pH quality control (QC) is described in another Earth System Science Data publication, while the complexity of the Southern Ocean physics and biogeochemistry prevented a proper QC analysis of the CFCs. The area-specific procedures of quality control, including crossover analysis between stations and inversion analysis of all crossover data (i.e. secondary QC), are briefly described here for the Atlantic sector of the Southern Ocean. Data from an existing, quality controlled database (GLODAP) were used as a reference for our computations – however, the reference data were included into the analysis without applying the recommended GLODAP adjustments so the corrections could be independently verified. The outcome of this effort is an internally consistent, high-quality carbon data set for all cruises, including the reference cruises. The suggested corrections by the inversion analysis were allowed to vary within a fixed envelope, thus accounting for natural variability. The percentage of cruises adjusted ranged from 31% (for nitrate) to 54% (for phosphate) depending on the variable

    Haptic guidance improves the visuo-manual tracking of trajectories

    Get PDF
    BACKGROUND: Learning to perform new movements is usually achieved by following visual demonstrations. Haptic guidance by a force feedback device is a recent and original technology which provides additional proprioceptive cues during visuo-motor learning tasks. The effects of two types of haptic guidances-control in position (HGP) or in force (HGF)-on visuo-manual tracking ("following") of trajectories are still under debate. METHODOLOGY/PRINCIPALS FINDINGS: Three training techniques of haptic guidance (HGP, HGF or control condition, NHG, without haptic guidance) were evaluated in two experiments. Movements produced by adults were assessed in terms of shapes (dynamic time warping) and kinematics criteria (number of velocity peaks and mean velocity) before and after the training sessions. CONCLUSION/SIGNIFICANCE: These results show that the addition of haptic information, probably encoded in force coordinates, play a crucial role on the visuo-manual tracking of new trajectories

    Gene silencing in tick cell lines using small interfering or long double-stranded RNA

    Get PDF
    Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system

    Evidence for a dissociation between the control of oculomotor capture and disengagement

    Get PDF
    The current study investigated whether capture of the eyes by a salient onset distractor and the disengagement of the eyes from that distractor are driven by the same or by different underlying control modes. A variant of the classic oculomotor capture task was used. Observers had to make a saccade to the only gray circle among red background circles. On some trials, a green (novel color), red (placeholder color) or gray (target color) distractor square was presented with sudden onset. Results showed that when participants reacted fast, oculomotor capture was primarily driven by bottom-up pop-out: both types of distractors (green and gray) that popped out among the red background elements showed more capture than a red distractor that did not pop-out. In contrast to initial capture, disengagement of the eyes from the distractor was driven by top-down target–distractor similarity effects. We also examined the time-course of this effect. The distractor could change from green to either the target or placeholder color. When the color change was early in time (30–40 ms after its onset), dwell times were strongly affected by the change, whereas the effect on oculomotor capture was weak. Importantly, a change occurring as early as 60–80 ms after distractor onset did neither affect capture nor dwell times, corroborating the assumption of parallel programming of saccades

    Intake of heterocyclic aromatic amines and the risk of prostate cancer in the EPIC-Heidelberg cohort

    Get PDF
    BACKGROUND: Heterocyclic amines (HCA) are positively associated with prostate cancer risk in animal models. Because of mostly inconsistent results of epidemiological studies, we examined the association between intake of HCA and prostate cancer risk. METHODS: In the EPIC-Heidelberg cohort, detailed information on diet, anthropometry, and lifestyle was assessed between 1994 and 1998. Dietary HCA intake was estimated using information on meat consumption, cooking methods, and preferred degree of browning. During 104,195 person-years of follow-up, 337 incident cases of prostate cancer (123 advanced cases) were identified among 9,578 men with valid dietary information. Multivariate Cox proportional hazards regression was used to examine the association between intake of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-3,4,8-dimethylimidazo[4,5-f]quinoxaline (DiMeIQx) and prostate cancer. RESULTS: Men in the highest quartiles of PhIP, MeIQx, and DiMeIQx intake, respectively, had no increased risk of prostate cancer compared with men in the lowest quartiles (HR = 0.89, 95% CI 0.66-1.22 [PhIP]; 1.06, 0.77-1.45 [MeIQx]; 0.98, 0.72-1.34 [DiMeIQx]). There were no associations between HCA intake and advanced prostate cancer or between high consumption of strongly browned meat and prostate cancer. DISCUSSION: Our data do not support the hypothesis that HCA intake as consumed in a regular diet is a risk factor for prostate cancer

    Growth charts for children with Ellis–van Creveld syndrome

    Get PDF
    Ellis–van Creveld (EvC) syndrome is a congenital malformation syndrome with marked growth retardation. In this study, specific growth charts for EvC patients were derived to allow better follow-up of growth and earlier detection of growth patterns unusual for EvC. With the use of 235 observations of 101 EvC patients (49 males, 52 females), growth charts for males and females from 0 to 20 years of age were derived. Longitudinal and cross-sectional data were collected from an earlier review of growth data in EvC, a database of EvC patients, and from recent literature. To model the growth charts, the GAMLSS package for the R statistical program was used. Height of EvC patients was compared to healthy children using Dutch growth charts. Data are presented both on a scale for age and on a scale for the square root of age. Compared to healthy Dutch children, mean height standard deviation score values for male and female EvC patients were −3.1 and −3.0, respectively. The present growth charts should be useful in the follow-up of EvC patients. Most importantly, early detection of growth hormone deficiency, known to occur in EvC, will be facilitated

    Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2

    Get PDF
    The increase of atmospheric CO2 (ref. 1) has been predicted to impact the seasonal cycle of inorganic carbon in the global ocean2,3, yet the observational evidence to verify this prediction has been missing. Here, using an observation-based product of the oceanic partial pressure of CO2 (pCO2) covering the past 34 years, we find that the winter-to-summer difference of the pCO2 has increased on average by 2.2 ± 0.4 μatm per decade from 1982 to 2015 poleward of 10° latitude. This is largely in agreement with the trend expected from thermodynamic considerations. Most of the increase stems from the seasonality of the drivers acting on an increasing oceanic pCO2 caused by the uptake of anthropogenic CO2 from the atmosphere. In the high latitudes, the concurrent ocean-acidification-induced changes in the buffer capacity of the ocean enhance this effect. This strengthening of the seasonal winter-to-summer difference pushes the global ocean towards critical thresholds earlier, inducing stress to ocean ecosystems and fisheries4. Our study provides observational evidence for this strengthening seasonal difference in the oceanic carbon cycle on a global scale, illustrating the inevitable consequences of anthropogenic CO2 emissions
    corecore