462 research outputs found

    Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution[Formula presented]

    Full text link
    Given the photovoltaic (PV) model's multi-model and nonlinear properties, extracting its parameters is a difficult problem to solve. Furthermore, because of the features of the problem, the algorithms that are used to solve it are subject to becoming stuck in local optima. Nonetheless, proper estimation of the parameters is essential due to the large impact they have on the performance of the PV system in terms of current and energy production. Moreover, the majority of the previously proposed algorithms have satisfactory results for determining PV model parameters. However, for precision and robustness, they generally use a lot of computational resources, such as the quantity of fitness assessments. For alleviating the previous problems, in this paper, an improved queuing search optimization (QSO) algorithm dependent on the differential evolution (DE) technique and bound-constraint amendment procedure, which is called IQSODE, has been presented to efficiently extract the PV parameter values for various PV models. The DE algorithm is applied to each solution generated by the QSO algorithm in order to increase population diversity. IQSODE is tested against other state-of-the-art algorithms. The practical and statistical findings show that IQSODE outperforms other methods in extracting parameters from PV models such as single diode, double diode, and photovoltaic module models. Also, the performance of the proposed algorithm is assessed utilizing two practical manufacturer's datasheets (TFST40 and MCSM55). Statistically, the IQSODE outperforms other state-of-the-art algorithms in terms of convergence speed, reliability, and accuracy. Thus, the presented method is deemed to be a viable solution for PV model parameter extraction

    Menstrual cycle phase does not predict political conservatism

    Get PDF
    Recent authors have reported a relationship between women's fertility status, as indexed by menstrual cycle phase, and conservatism in moral, social and political values. We conducted a survey to test for the existence of a relationship between menstrual cycle day and conservatism. 2213 women reporting regular menstrual cycles provided data about their political views. Of these women, 2208 provided information about their cycle date, 1260 provided additional evidence of reliability in self-reported cycle date, and of these, 750 also indicated an absence of hormonal disruptors such as recent hormonal contraception use, breastfeeding or pregnancy. Cycle day was used to estimate day-specific fertility rate (probability of conception); political conservatism was measured via direct self-report and via responses to the "Moral Foundations” questionnaire. We also recorded relationship status, which has been reported to interact with menstrual cycle phase in determining political preferences. We found no evidence of a relationship between estimated cyclical fertility changes and conservatism, and no evidence of an interaction between relationship status and cyclical fertility in determining political attitudes. Our findings were robust to multiple inclusion/exclusion criteria and to different methods of estimating fertility and measuring conservatism. In summary, the relationship between cycle-linked reproductive parameters and conservatism may be weaker or less reliable than previously thought

    Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp maritima: from traditional remedies to prospective products

    Get PDF
    This work explored the biotechnological potential of the medicinal halophyte Artemisia campestris subsp. maritima (dune wormwood) as a source of health promoting commodities. For that purpose, infusions, decoctions and tinctures were prepared from roots and aerial-organs and evaluated for in vitro antioxidant, anti-diabetic and tyrosinase-inhibitory potential, and also for polyphenolic and mineral contents and toxicity. The dune wormwood extracts had high polyphenolic content and several phenolics were identified by ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). The main compounds were quinic, chlorogenic and caffeic acids, coumarin sulfates and dicaffeoylquinic acids; several of the identified phytoconstituents are here firstly reported in this A. campestris subspecies. Results obtained with this plant's extracts point to nutritional applications as mineral supplementary source, safe for human consumption, as suggested by the moderate to low toxicity of the extracts towards mammalian cell lines. The dune wormwood extracts had in general high antioxidant activity and also the capacity to inhibit a-glucosidase and tyrosinase. In summary, dune wormwood extracts are a significant source of polyphenolic and mineral constituents, antioxidants and a-glucosidase and tyrosinase inhibitors, and thus, relevant for different commercial segments like the pharmaceutical, cosmetic and/or food industries.FCT - Foundation for Science and Technology [CCMAR/Multi/04326/2013]; Portuguese National Budget; FCT [IF/00049/2012, SFRH/BD/94407/2013]; Research Foundation - Flanders (FWO) [12M8315N]info:eu-repo/semantics/publishedVersio

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    The molecular characterisation of Escherichia coli K1 isolated from neonatal nasogastric feeding tubes

    Get PDF
    Background: The most common cause of Gram-negative bacterial neonatal meningitis is E. coli K1. It has a mortality rate of 10–15%, and neurological sequelae in 30– 50% of cases. Infections can be attributable to nosocomial sources, however the pre-colonisation of enteral feeding tubes has not been considered as a specific risk factor. Methods: Thirty E. coli strains, which had been isolated in an earlier study, from the residual lumen liquid and biofilms of neonatal nasogastric feeding tubes were genotyped using pulsed-field gel electrophoresis, and 7-loci multilocus sequence typing. Potential pathogenicity and biofilm associated traits were determined using specific PCR probes, genome analysis, and in vitro tissue culture assays. Results: The E. coli strains clustered into five pulsotypes, which were genotyped as sequence types (ST) 95, 73, 127, 394 and 2076 (Achman scheme). The extra-intestinal pathogenic E. coli (ExPEC) phylogenetic group B2 ST95 serotype O1:K1:NM strains had been isolated over a 2 week period from 11 neonates who were on different feeding regimes. The E. coli K1 ST95 strains encoded for various virulence traits associated with neonatal meningitis and extracellular matrix formation. These strains attached and invaded intestinal, and both human and rat brain cell lines, and persisted for 48 h in U937 macrophages. E. coli STs 73, 394 and 2076 also persisted in macrophages and invaded Caco-2 and human brain cells, but only ST394 invaded rat brain cells. E. coli ST127 was notable as it did not invade any cell lines. Conclusions: Routes by which E. coli K1 can be disseminated within a neonatal intensive care unit are uncertain, however the colonisation of neonatal enteral feeding tubes may be one reservoir source which could constitute a serious health risk to neonates following ingestion

    Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne and Becker Muscular dystrophies (DMD/BMD) are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements.</p> <p>Methods</p> <p>We selected 47 patients (41 families; 35 DMD, 6 BMD) without deletions and duplications in <it>DMD </it>gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis). This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis.</p> <p>Results</p> <p>We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n = 10 patients), followed by TAG (n = 7) and TAA (n = 4). We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the <it>DMD </it>gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65.</p> <p>Conclusion</p> <p>The analysis of our patients' sample, carrying point mutations or complex rearrangements in <it>DMD </it>gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects and dystrophin functional domains. These data can have a prognostic relevance and can be useful in directing new therapeutic approaches, which rely on a precise definition of the genetic defects as well as their molecular consequences.</p

    Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval

    Get PDF
    Background: Chloride (Cl) secretion by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) located in the apical membrane of respiratory epithelial cells plays a critical role in maintenance of the airway surface liquid and mucociliary clearance of pathogens. Previously, we and others have shown that the serum and glucocorticoid-inducible kinase-1 (SGK1) increases wild type CFTR (wt-CFTR) mediated Cl transport in Xenopus oocytes by increasing the amount of wt-CFTR protein in the plasma membrane. However, the effect of SGK1 on the membrane abundance of wt-CFTR in airway epithelial cells has not been examined, and the mechanism whereby SGK1 increases membrane wt-CFTR has also not been examined. Thus, the goal of this study was to elucidate the mechanism whereby SGK1 regulates the membrane abundance of wt-CFTR in human airway epithelial cells. Methods and Results: We report that elevated levels of SGK1, induced by dexamethasone, increase plasma membrane abundance of wt-CFTR. Reduction of SGK1 expression by siRNA (siSGK1) and inhibition of SGK1 activity by the SGK inhibitor GSK 650394 abrogated the ability of dexamethasone to increase plasma membrane wt-CFTR. Overexpression of a constitutively active SGK1 (SGK1-S422D) increased plasma membrane abundance of wt-CFTR. To understand the mechanism whereby SGK1 increased plasma membrane wt-CFTR, we examined the effects of siSGK1 and SGK1-S442D on the endocytic retrieval of wt-CFTR. While siSGK1 increased wt-CFTR endocytosis, SGK1-S442D inhibited CFTR endocytosis. Neither siSGK1 nor SGK1-S442D altered the recycling of endocytosed wt-CFTR back to the plasma membrane. By contrast, SGK1 increased the endocytosis of the epidermal growth factor receptor (EGFR). Conclusion: This study demonstrates for the first time that SGK1 selectively increases wt-CFTR in the plasma membrane of human airway epithelia cells by inhibiting its endocytic retrieval from the membrane. © 2014 Bomberger et al

    Nanoparticle Network Formation in Nanostructured and Disordered Block Copolymer Matrices

    Get PDF
    Incorporation of nanoparticles composed of surface-functionalized fumed silica (FS) or native colloidal silica (CS) into a nanostructured block copolymer yields hybrid nanocomposites whose mechanical properties can be tuned by nanoparticle concentration and surface chemistry. In this work, dynamic rheology is used to probe the frequency and thermal responses of nanocomposites composed of a symmetric poly(styrene-b-methyl methacrylate) (SM) diblock copolymer and varying in nanoparticle concentration and surface functionality. At sufficiently high loading levels, FS nanoparticle aggregates establish a load-bearing colloidal network within the copolymer matrix. Transmission electron microscopy images reveal the morphological characteristics of the nanocomposites under these conditions

    Combined immunohistochemistry of β-catenin, cytokeratin 7, and cytokeratin 20 is useful in discriminating primary lung adenocarcinomas from metastatic colorectal cancer

    Get PDF
    BACKGROUND: It is important to discriminate between primary and secondary lung cancer. However, often, the discriminating diagnosis of primary lung acinar adenocarcinoma and lung metastasis of colorectal cancer based on morphological and pathological findings is difficult. The purpose of this study was to evaluate the clinical usefulness of immunohistochemistry of β-catenin, cytokeratin (CK) 7, and CK20 for the discriminating diagnosis of lung cancer. METHODS: We performed immunohistochemistry of β-catenin, CK7, and CK20 in 19 lung metastasis of colorectal cancer samples, 10 corresponding primary colorectal cancer samples and 11 primary lung acinar adenocarcinoma samples and compared the levels of accuracy of the discriminating diagnosis by using antibodies against these antigens. RESULTS: Positive staining of β-catenin was observed in all the lung metastasis of colorectal cancer samples as well as in the primary colorectal cancer samples but in none of the primary lung acinar adenocarcinoma samples. Positive staining of CK7 was observed in 90.9% of the primary lung acinar adenocarcinoma samples and in 5.3% of the lung metastasis of colorectal cancer samples, but in none of the primary colorectal cancer samples. Positive staining of CK20 was observed in all the primary colorectal cancer samples and in 84.2% of the lung metastasis of colorectal cancer samples, but in none of the primary lung acinar adenocarcinoma samples. CONCLUSION: Combined immunohistochemistry of β-catenin, CK7, and CK20 is useful for making a discriminating diagnosis between lung metastasis of colorectal cancer and primary lung acinar adenocarcinoma. This method will enable accurate diagnosis of a lung tumor and will be useful for selecting appropriate therapeutic strategies, including chemotherapeutic agents and operation methods

    Gene Expression, Function and Ischemia Tolerance in Male and Female Rat Hearts After Sub-Toxic Levels of Angiotensin II

    Get PDF
    To examine the response to chronic high-dose angiotensin II (Ang II) and a proposed milder response in female hearts with respect to gene expression and ischemic injury. Female and male litter–matched rats were treated with 400 ng kg−1 min−1 Ang II for 14 days. Hearts were isolated, subjected to 30-min ischemia and 30-min reperfusion in combination with functional monitoring and thereafter harvested for gene expression, WB and histology. Ang II-treated hearts showed signs of non-hypertrophic remodeling and had significantly higher end diastolic pressure after reperfusion, but no significant gender difference was detected. Ang II increased expression of genes related to heart function (ANF, β-MCH, Ankrd-1, PKC-α, PKC-δ TNF-α); fibrosis (Col I-α1, Col III-α1, Fn-1, Timp1) and apoptosis (P53, Casp-3) without changing heart weight but with 68% increase in collagen content. High (sub-toxic) dose of Ang II resulted in marked heart remodeling and diastolic dysfunction after ischemia without significant myocyte hypertrophy or ventricular chamber dilatation. Although there were some gender-dependent differences in gene expression, female gender did not protect against the overall response
    corecore