156 research outputs found

    Frequency of non-motor symptoms in parkinson disease: experience from Pakistan

    Get PDF
    The objective of this study was to determine the frequency of non-motor symptoms (NMS) in patients with Parkinson\u27s disease (PD) and to compare frequency in mild and severe disease. Materials and methods: This descriptive observational study was done from January 2015 to June 2015 at Department of Neurology, Pakistan Institute of Medical Sciences, Islamabad. We used Non-Motor Symptom Questionnaire (NMS-Q); a validated scale using 30 questions related to 9 different domains of symptoms. Results: 62 patients were enrolled in the final data set of study (male 46, Female 16) with average age of 62.4 years (range=33-80). Non-motor symptoms were reported very commonly in all stages of PD including urinary urgency (74%), dizziness (71%), memory problems (71%), sexual difficulty (69%), constipation (67%) and depression (62%). Only non-motor symptom that was statistically significantly higher in the severe stages was “reported falls” (Mild 39%, severe 61%, p \u3c 0.01). Some were more common (lightheadedness, falls, sexual difficulty) while others were less (hyposmia). Conclusion: Non-motor symptoms are very common in Pakistani population of PD and are seen equally in mild and severe PD with exception of “reported falls”. The high prevalence of non-motor symptoms (especially in mild stages) should be kept in mind while managing PD. Furthermore, there may be the likely need for a culturally appropriate screening scale for our population

    Fuzzy Logic-Based Direct Power Control Method for PV Inverter of Grid-Tied AC Microgrid without Phase-Locked Loop

    Get PDF
    A voltage source inverter (VSI) is the key component of grid-tied AC Microgrid (MG) which requires a fast response, and stable, robust controllers to ensure efficient operation. In this paper, a fuzzy logic controller (FLC)-based direct power control (DPC) method for photovoltaic (PV) VSI was proposed, which was modelled by modulating MG’s point of common coupling (PCC) voltage. This paper also introduces a modified grid synchronization method through the direct power calculation of PCC voltage and current, instead of using a conventional phase-locked loop (PLL) system. FLC is used to minimize the errors between the calculated and reference powers to generate the required control signals for the VSI through sinusoidal pulse width modulation (SPWM). The proposed FLC-based DPC (FLDPC) method has shown better tracking performance with less computational time, compared with the conventional MG power control methods, due to the elimination of PLL and the use of a single power control loop. In addition, due to the use of FLC, the proposed FLDPC exhibited negligible steady-state oscillations in the output power of MG’s PV-VSI. The proposed FLDPC method performance was validated by conducting real-time simulations through real time digital simulator (RTDS). The results have demonstrated that the proposed FLDPC method has a better reference power tracking time of 0.03 s along with reduction in power ripples and less current total harmonic distortion (THD) of 1.59%.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Superadded Bacterial Infections in COVID–19 Patients; Antimicrobial Susceptibility and Association with Serological Markers

    Get PDF
    Objective: To determine the frequency and antimicrobial susceptibility pattern of pathogens responsible for superadded bacterial infection in COVID-19 patients and correlate the association of these infections with serological markers. Study Design: Cross-sectional study. Place and Duration of study: Department of Pathology, Combined Military Hospital, Multan Pakistan, from Jan to Dec 2021. Methodology: A total of 290 patients having positive RT-PCR for SARS CoV-2 were included. All samples were processed per Clinical Laboratory Standard Institute (CLSI) protocols. API 20E and API 20NE were used for the identification of Gramnegative rods. Antimicrobial susceptibility testing was performed by the modified Kirby Bauer disc diffusion method.Serological markers, including C-reactive protein (CRP), total leucocyte count (TLC) and serum Ferritin, were determined and compared for significance in positive and negative culture cases. Results: A total of 75 patients had positive bacterial cultures. Among these, 42(56%) were blood culture, 26(35 %) were respiratory culture and 7(9%) were urine culture. Commonly isolated organisms were Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus and Pseudomonas aeruginosa, i.e., 23(31%), 20(27%), 13(17%), and 12(16%) respectively. CRP, TLC and S. ferritin were markedly raised in superadded bacterial infection compared to patients with COVID-19 infection only. Conclusion: The frequency of superadded bacterial infections in COVID-19 patients is high. The pathogens isolated in these cases were multidrug-resistant, reflecting mostly hospital-acquired flora. The association of serological markers in depicting superadded infection is statistically significant and may be used to screen for superadded bacterial infection in COVID-19 patients

    Flow control in microfluidics devices: electro-osmotic Couette flow with joule heating effect

    Get PDF
    Purpose – Joule heating effect is a pervasive phenomenon in electro-osmotic flow because of the applied electric field and fluid electrical resistivity across the microchannels. Its effect in electro-osmotic flow field is an important mechanism to control the flow inside the microchannels and it includes numerous applications. Design/methodology/approach – This research article details the numerical investigation on alterations in the profile of stream wise velocity of simple Couette-electroosmotic flow and pressure driven electro-osmotic Couette flow by the dynamic viscosity variations happened due to the Joule heating effect throughout the dielectric fluid usually observed in various microfluidic devices. Findings – The advantages of the Joule heating effect are not only to control the velocity in microchannels but also to act as an active method to enhance the mixing efficiency. The results of numerical investigations reveal that the thermal field due to Joule heating effect causes considerable variation of dynamic viscosity across the microchannel to initiate a shear flow when EDL (Electrical Double Layer) thickness is increased and is being varied across the channel. Originality/value – This research work suggest how joule heating can be used as en effective mechanism for flow control in microfluidic devices

    Exhaust emission profiling of fatty acid methyl esters and NOx control studies using selective synthetic and natural additives

    Get PDF
    The present study was focused on the optimized biodiesel production using Moringa oleifera (M. oleifera) and rice bran oils, characterization, and comparative evaluation of the exhaust emission profile using artificial and natural additives resulting from synthesized biodiesel. Furthermore, various biodiesel blends (B10, B20, B50, and B100) of Moringa oleifera (M. oleifera) and rice bran oils were studied in a four-cylinder, direct injection engine at different engine speeds (1800–3000 rpm). The optimal yields (%) for both the M. oleifera and rice bran oil-based biodiesel were found to be 87 ± 2.0 and 93 ± 2.6%, respectively, using sodium methoxide as the catalyst. The optimized reaction parameters involved in the transesterification of the M. oleifera and rice bran oils were revealed to be catalyst concentration (1.25%), methanol-to-oil molar ratio (9:1), reaction temperature (60 °C), and reaction time (90 min). The fuel properties of the M. oleifera and rice bran oil-based biodiesel were found to be in compliance with ASTM D6751 and EN 14214. The exhaust emission levels of the synthesized biodiesel and its blends with conventional diesel showed a significant reduction in the particulate matter and carbon monoxide levels comparative to the fossil fuel-based diesel combustion, whereas an increasing trend was observed in case of the oxides of nitrogen (NOx) emission. The results of the engine performance test indicated that the brake power in all of the samples had approximately similar values for each load and the enriched blends showed a distinct improvement in brake-specific fuel consumption. The effect of antioxidants on the NOx emission levels resulting from the combustion of the biodiesel and its blends showed that the synthetic additives (butylated hydroxyl anisole (BHA), butylated hydroxyl toluene (BHT), t-butyl hydroquinone (TBHQ), and propyl gallate (PG)) were more effective than the natural methanolic antioxidant extracts (extract of P. pinnata (EPPL), extract of A. lebbeck (EPPL), extract of P. guajava (EPG), and extract of M. azedarcah (EMA) for reduction in the NOx emission level

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background: Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. // Methods: For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dose-specific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in country-reported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. // Findings: By 2019, global coverage of third-dose DTP (DTP3; 81·6% [95% uncertainty interval 80·4–82·7]) more than doubled from levels estimated in 1980 (39·9% [37·5–42·1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38·5% [35·4–41·3] in 1980 to 83·6% [82·3–84·8] in 2019). Third-dose polio vaccine (Pol3) coverage also increased, from 42·6% (41·4–44·1) in 1980 to 79·8% (78·4–81·1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56·8 million (52·6–60·9) to 14·5 million (13·4–15·9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. // Interpretation: After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines
    corecore