2,369 research outputs found

    Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice

    Get PDF
    A spin liquid is a novel quantum state of matter with no conventional order parameter where a finite charge gap exists even though the band theory would predict metallic behavior. Finding a stable spin liquid in two or higher spatial dimensions is one of the most challenging and debated issues in condensed matter physics. Very recently, it has been reported that a model of graphene, i.e., the Hubbard model on the honeycomb lattice, can show a spin liquid ground state in a wide region of the phase diagram, between a semi-metal (SM) and an antiferromagnetic insulator (AFMI). Here, by performing numerically exact quantum Monte Carlo simulations, we extend the previous study to much larger clusters (containing up to 2592 sites), and find, if any, a very weak evidence of this spin liquid region. Instead, our calculations strongly indicate a direct and continuous quantum phase transition between SM and AFMI.Comment: 15 pages with 7 figures and 9 tables including supplementary information, accepted for publication in Scientific Report

    Structural phase transition in IrTe2_2: A combined study of optical spectroscopy and band structure calculations

    Full text link
    Ir1−x_{1-x}Ptx_xTe2_2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2_2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px_x, py_y) and Te pz_z bands.Comment: 16 pages, 5 figure

    Broken symmetry states and divergent resistance in suspended bilayer graphene

    Get PDF
    Graphene [1] and its bilayer have generated tremendous excitement in the physics community due to their unique electronic properties [2]. The intrinsic physics of these materials, however, is partially masked by disorder, which can arise from various sources such as ripples [3] or charged impurities [4]. Recent improvements in quality have been achieved by suspending graphene flakes [5,6], yielding samples with very high mobilities and little charge inhomogeneity. Here we report the fabrication of suspended bilayer graphene devices with very little disorder. We observe fully developed quantized Hall states at magnetic fields of 0.2 T, as well as broken symmetry states at intermediate filling factors ν=0\nu = 0, ±1\pm 1, ±2\pm 2 and ±3\pm 3. The devices exhibit extremely high resistance in the ν=0\nu = 0 state that grows with magnetic field and scales as magnetic field divided by temperature. This resistance is predominantly affected by the perpendicular component of the applied field, indicating that the broken symmetry states arise from many-body interactions.Comment: 23 pages, including 4 figures and supplementary information; accepted to Nature Physic

    Aharonov-Bohm interferences from local deformations in graphene

    Full text link
    One of the most interesting aspects of graphene is the tied relation between structural and electronic properties. The observation of ripples in the graphene samples both free standing and on a substrate has given rise to a very active investigation around the membrane-like properties of graphene and the origin of the ripples remains as one of the most interesting open problems in the system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields that have become an ex- perimental reality after the suggestion that Landau levels can form associated to strain in graphene and the subsequent experimental confirmation. Here we propose a device to detect microstresses in graphene based on a scanning-tunneling-microscopy setup able to measure Aharonov-Bohm inter- ferences at the nanometer scale. The interferences to be observed in the local density of states are created by the fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific

    Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

    Get PDF
    The strong interest in graphene has motivated the scalable production of high quality graphene and graphene devices. Since large-scale graphene films synthesized to date are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman "D" peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material

    Paniya Voices: A Participatory Poverty and Health Assessment among a marginalized South Indian tribal population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In India, indigenous populations, known as <it>Adivasi </it>or Scheduled Tribes (STs), are among the poorest and most marginalized groups. 'Deprived' ST groups tend to display high levels of resignation and to lack the capacity to aspire; consequently their health perceptions often do not adequately correspond to their real health needs. Moreover, similar to indigenous populations elsewhere, STs often have little opportunity to voice perspectives framed within their own cultural worldviews. We undertook a study to gather policy-relevant data on the views, experiences, and priorities of a marginalized and previously enslaved tribal group in South India, the Paniyas, who have little 'voice' or power over their own situation.</p> <p>Methods/design</p> <p>We implemented a Participatory Poverty and Health Assessment (PPHA). We adopted guiding principles and an ethical code that promote respect for Paniya culture and values. The PPHA, informed by a vulnerability framework, addressed five key themes (health and illness, well-being, institutions, education, gender) using participatory approaches and qualitative methods. We implemented the PPHA in five Paniya colonies (clusters of houses in a small geographical area) in a <it>gram panchayat </it>(lowest level decentralized territorial unit) to generate data that can be quickly disseminated to decision-makers through interactive workshops and public forums.</p> <p>Preliminary findings</p> <p>Findings indicated that the Paniyas are caught in multiple 'vulnerability traps', that is, they view their situation as vicious cycles from which it is difficult to break free.</p> <p>Conclusion</p> <p>The PPHA is a potentially useful approach for global health researchers working with marginalized communities to implement research initiatives that will address those communities' health needs in an ethical and culturally appropriate manner.</p

    Energy gaps, topological insulator state and zero-field quantum Hall effect in graphene by strain engineering

    Get PDF
    Among many remarkable qualities of graphene, its electronic properties attract particular interest due to a massless chiral character of charge carriers, which leads to such unusual phenomena as metallic conductivity in the limit of no carriers and the half-integer quantum Hall effect (QHE) observable even at room temperature [1-3]. Because graphene is only one atom thick, it is also amenable to external influences including mechanical deformation. The latter offers a tempting prospect of controlling graphene's properties by strain and, recently, several reports have examined graphene under uniaxial deformation [4-8]. Although the strain can induce additional Raman features [7,8], no significant changes in graphene's band structure have been either observed or expected for realistic strains of approx. 10% [9-11]. Here we show that a designed strain aligned along three main crystallographic directions induces strong gauge fields [12-14] that effectively act as a uniform magnetic field exceeding 10 T. For a finite doping, the quantizing field results in an insulating bulk and a pair of countercirculating edge states, similar to the case of a topological insulator [15-20]. We suggest realistic ways of creating this quantum state and observing the pseudo-magnetic QHE. We also show that strained superlattices can be used to open significant energy gaps in graphene's electronic spectrum
    • …
    corecore