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Among many remarkable qualities of graphene, its electronic properties attract particular interest due 
to a massless chiral character of charge carriers, which leads to such unusual phenomena as metallic 
conductivity in the limit of no carriers and the half-integer quantum Hall effect (QHE) observable 
even at room temperature [1-3]. Because graphene is only one atom thick, it is also amenable to 
external influences including mechanical deformation. The latter offers a tempting prospect of 
controlling graphene’s properties by strain and, recently, several reports have examined graphene 
under uniaxial deformation [4-8]. Although the strain can induce additional Raman features [7,8], no 
significant changes in graphene’s band structure have been either observed or expected for realistic 
strains of ~10% [9-11]. Here we show that a designed strain aligned along three main crystallographic 
directions induces strong gauge fields [12-14] that effectively act as a uniform magnetic field exceeding 
10 T. For a finite doping, the quantizing field results in an insulating bulk and a pair of counter- 
circulating edge states, similar to the case of a topological insulator [15-20]. We suggest realistic ways 
of creating this quantum state and observing the pseudo-magnetic QHE. We also show that strained 
superlattices can be used to open significant energy gaps in graphene’s electronic spectrum.

If a mechanical strain A varies smoothly on the scale of interatomic distances, it does not break the sublattice 
symmetry but rather deforms the Brillouin zone in such a way that the Dirac cones located in graphene at 
points K  and K ’ are shifted in the opposite directions [2]. This is reminiscent of the effect induced on charge 
carriers by magnetic field B applied perpendicular to the graphene plane [2,12-14]. The strain-induced, 
pseudo-magnetic field BS or, more generally, gauge field vector potential A  have opposite signs for 
graphene’s two valleys K  and K ’, which means that elastic deformations, unlike magnetic field, do not 
violate the time-reversal symmetry of a crystal as a whole [12-14,21,22].

Based on this analogy between strain and magnetic field, we ask the following question: Is it possible to 
create such a distribution of strain that it results in a strong uniform pseudo-field BS and, accordingly, leads 
to a “pseudo-QHE” observable in zero B? The previous attempts to engineer energy gaps by applying strain 
[5-7] seem to suggest a negative answer. Indeed, the hexagonal symmetry of the graphene lattice generally 
implies a highly anisotropic distribution of BS [21,22]. Therefore, the strain is expected to contribute 
primarily in the phenomena that do not average out in a random magnetic field such as weak localization 
[13,14]. Furthermore, a strong gauge field necessitates the opening of energy gaps due to Landau
quantization, SE « 400K • *Jb  (>0.1 eV for BS =10T) whereas no gaps were theoretically found for uniaxial 
strain as large as «25% [4]. The only way to induce significant gaps, which was known so far, is to spatially 

confine carriers (SE «0.1 eV requires 10 nm wide ribbons) [1,2]. Contrary to these expectations, we have 
found that by applying stresses with triangular symmetry, it is possible to generate a uniform quantizing BS 
equivalent to tens of Tesla so that the corresponding gaps exceed 0.1 eV and are observable at room 
temperature.

A two-dimensional strain field uij (x, y ) leads to a gauge field [23,24]

(1)A = —
a

xx yy
— 2uxxy J

where a is the lattice constant, j3 = -d  ln t / d ln a « 2 , t the nearest-neighbour hopping parameter, and the x- 
axis is chosen along a zigzag direction of the graphene lattice. In the following, we consider valley K, unless
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stated otherwise. One can immediately see that BS can only be created by non-uniform shear strain. Indeed, 
for dilation (isotropic strain), equation (1) leads to A  = 0 and, for the uniform strain previously considered in 
refs. [4-6], to A  = const which also yields zero BS.
Using polar coordinates (r ,e ) , equation (1) can be rewritten as

A =

Ae =

1 due 1 dur ue
r

----- e  Icos3e + l --------^ + —  -
r d e  J I r d e  r

ue 1 dur 
dr r r de

I f  1 due ur 
cos3e + l ----- -  + —1 - ­
1 I r de  i

due
dr

dur
dr

sin3e

sin3e

(2)

which yields the pseudo-magnetic field

B = A  _ d 4 = 1  d A  _ d A e _  A
S dx dy r de  dr r

(3).

In the radial representation, it is easy to show that uniform BS is achieved for the following displacements:
ur = cr2 sin3e, ue = cr2 cos3e (4)

where c is a constant. The strain described by (4) and its crystallographic alignment are shown in Figures 1a 
and 1b, respectively. This yields uniform BS = 8/?c / a (given in units h / e = 1). For a disk of diameter D,
which experiences a maximum strain Am at its perimeter, we find c = Am / D  . Assuming achievable Am =

10% and D = 100 nm, we find BS « 40T, the effective magnetic length lB =
aD

®4 nm and the largest

Landau gap of «0.25 eV. Note that distortions (4) are purely shear and do not result in any changes in the 
area of a unit cell, which means that there is no effective electrostatic potential generated by such strain [23].
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Figure 1. Designed strain can generate a strictly uniform pseudo-magnetic field in graphene. (a) Distortion 
of a graphene disc which is required to generate uniform BS. The original shape is shown in blue. (b) 
Orientation of the graphene crystal lattice with respect to the strain. Graphene is stretched or compressed 
along three equivalent crystallographic directions <100>. Two graphene sublattices are shown in red and 
green. (c) Distribution of the forces applied at disk’s perimeter (arrows), which would create the strain 
required in (a). The uniform colour inside the disk indicates strictly uniform pseudo-magnetic field. (d) The 
shown shape allows uniform BS to be generated only by normal forces applied at the sample’s perimeter. The 
length of arrows indicates the required local stress.

The lattice distortions in Fig. 1a can be induced by in-plane forces F  applied only at the perimeter and, for 
the case of a disc, they are given simply by

ur

b

2



Fx (e) = 4c^sin(2e), Fy (e )=  4 c^co s(ie )  (5)
where u  is the shear modulus. Fig. 1c shows the required force pattern. It is difficult to create such strain 
experimentally because this involves tangential forces and both stretching and compression. To this end, we 
have solved an inverse problem to find out whether uniform BS can be generated by normal forces only. 
There exists a unique solution for the shape of a graphene sample, which allows this and is plotted in Fig. 1d 
(see Supplementary Information, part I).

A strong pseudo-magnetic field should lead to Landau quantization and a QHE-like state. The latter is 
different from the standard QHE because BS has opposite signs for charge carriers in valleys K  and K ’ and, 
therefore, generates edges states that circulate in opposite directions. The co-existence of gaps in the bulk 
and counter-propagating states at the boundaries without breaking the time-reversal symmetry is reminiscent 
of the topological insulators [15-20] and, in particular, the quantum valley Hall effect in “gapped graphene” 
[20] and the quantum spin Hall effect induced by strain [16]. The latter theory has exploited the influence of 
three-dimensional strain on spin-orbit coupling in semiconductor heterostructures, which can lead to quasi­
Landau quantization with opposite BS acting on two spins rather than valleys. Weak spin-orbit coupling 
allows only tiny Landau gaps <1 ueV [16] which, to be observable, would require temperatures below 10 
mK and carrier mobilities higher than 107 cm2/Vs. Our approach exploits the unique strength of pseudospin­
orbit coupling in graphene, which leads to SE > 0.1 eV and makes the strain-induced Landau levels 
realistically observable.
The two cases described above prove that by using strain it is possible to generate a strong uniform BS and 
observe the pseudo-QHE. They also provide the general concept that if the strain is applied along all three 
<100> crystallographic directions to match graphene’s symmetry, this prevents the generated fields from 
changing sign. Experimentally, it is a difficult task to generate such a complex distribution of forces as 
shown in Fig. 1. Below we develop the above concept further and show that the pseudo-QHE can be 
observed in geometries that are easier to realize, even though they do not provide a perfectly uniform BS.

Let us consider a regular hexagon with side length L and normal stresses applied evenly at its three non­
adjacent sides and along <100> axes (Fig. 2a). Our numerical solution for this elasticity problem shows that 
BS has a predominant direction (positive for K  and negative for K ’) and is rather uniform close to the 
hexagon’s centre. Assuming L = 100 nm and Am = 10%, we find for Fig. 2a that BS varies between ±22 T but 
is «20 T over most of the hexagon’s central area. For other L and A, one can rescale the plotted values of BS 
by using expression BS <x Am / L  . We have also examined other geometries (Supplementary Information) 
and always found a nearly uniform distribution of BS near samples’ centre.

To verify that the non-uniform BS in Fig. 2a leads to well-defined Landau quantization, we have calculated 
the resulting density of states D(E). This analysis necessitates tight-binding calculations that were carried out 
for a graphene hexagon with zigzag edges (see Supplementary Information). Our computational power has 
limited the size of the studied hexagons to L «30 nm. Fig. 2b plots our results for Am =1% (BS «7T at the 
hexagon centre) and compares them for the case of the same hexagon in B = 0 and 10T but without strain. In 
the absence of strain or B, the peak at zero E is due to the states localized at zigzag edges [2]. One can also 
see that both non-uniform BS and uniform B generate Landau levels and the quality of the induced 
quantization is rather similar. The zero-E peak in Fig. 2b is dominated by zigzag states in all three cases 
whereas the other levels are slightly broadened by non-uniform BS. The influence of the inhomogeneity in BS 
on the zero level should, in general, be minimal because magnetic field inhomogeneity does not lead to 
broadening of this level [25]. We emphasize that the presence of a significant density of states between 
pseudo-Landau levels in Fig. 2b is mostly due to small L used in our numerical calculations. For micrometer 
hexagons, the corresponding gaps (even when averaged over the whole sample) should be well resolved if 
only slightly smeared by non-uniform BS.
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Figure 2. Stretching graphene along <100> axes generates a pseudo-magnetic field that is rather uniform at 
the centre. (a) Distribution of BS for a regular hexagon stretched by its three sides oriented perpendicular to 
<100>. Other examples are given in Supplementary Information. (b) Normalized density of states for the 
hexagon in (a) with L = 30 nm and Am = 1%. The black curve is for the case of no strain and no magnetic 
field. The peak at zero E is due to states at zigzag edges. The blue curve shows the Landau quantization 
induced by magnetic field B = 10 T. The pseudo-magnetic field with BS « 7 T near the hexagon’s centre 
induces the quantization shown by the red curve. A comparison between the curves shows that the finite 
density of states between the pseudo-Landau levels is due to the small sample size in the tight-binding 
calculations.

In order to create the required strain experimentally, one can generally think of exploiting the difference in 
thermal expansion of graphene and a substrate [11] and apply temperature gradients along <100> axes. For 
the case of quasi-uniform BS, there are many more options available, including the use of suspended samples 
and profiled substrates. For example, a graphene hexagon can be suspended by three metallic contacts 
attached to its sides, similar to the technique used to study suspended graphene [26,27], and the strain can 
then be controlled by gate voltage. Alternatively, a quasi-uniform BS can be created by depositing graphene 
over triangular trenches (Supplementary Information).

To probe the pseudo-Landau quantization, one can employ optical techniques, for example, Raman 
spectroscopy that should reveal extra resonances induced by BS [28]. One can also use transport 
measurements in both standard and Corbino-disk geometries. In the former case, the counter-propagating 
edge states imply that contributions from two valleys cancel each other and no Hall signal is generated 
(p>xy=0) [15-20]. At the same time, the edge transport can lead to longitudinal resistivity p x = h/4e2N  where 
N  is the number of spin-degenerate Landau level at the Fermi energy. This non-zero quantized p x has the 
same origin as in so-called dissipative QHE where two edge states with opposite spins propagate in opposite 
directions [29]. In spin-based topological insulators, the edge transport is protected by slow spin flip rates 
[15,16,29]. In our case, atomic-scale disorder at the edges is likely to mix the counter-circulating states on a 
submicron scale (Supplementary Information). Therefore, instead of quantization in pp we may expect 
highly-resistive metallic edge states, similar to the case discussed in ref. [29]. The suppression of the edge- 
state ballistic transport does not affect the pseudo-Landau quantization in graphene’s interior, where 
intervalley scattering is very weak [13,30] and should not case any extra level broadening. Highly-resistive 
edges should in fact make it easier to probe pseudo-Landau gaps in the bulk. In the Corbino geometry, the 
edge-state mixing is irrelevant, and we expect two-probe p x to be a periodic function of gate voltage and 
show an insulating behaviour between pseudo-Landau levels. Furthermore, the outer contact can be used to 
cover perimeter regions with non-uniform BS (such as in Fig. 2) which should improve the quality of 
quantization.
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Figure 3. Energy gaps can be opened in strained graphene superlattices. (a) Strain with triangular symmetry 
can be created by depositing graphene on profiled surfaces. The corrugations shown in (a) result in the 
distribution of pseudo-magnetic field plotted in (b). BS varies between ±0.5T (red to violet) with the 
periodicity twice shorter than in (a). (c) Low energy bands induced by the periodic strain. The bands are 
symmetric with respect to zero E .

Finally, we point out that the developed concept can be employed to create gaps in bulk graphene. Imagine a 
macroscopic graphene sheet deposited on top of a corrugated surface with a triangular landscape (Fig. 3a). In 
the following calculations, we have fixed the graphene sheet at the landscape’s extrema and allowed the 
resulting in-plane displacements to relax [21,22] (at the nanoscale, graphene should then be kept in place by 
van der Waals forces). The resulting pseudo-magnetic superlattice is plotted in Fig. 3b whereas Fig. 3c 
shows the resulting energy spectrum. Close to zero E, there is a continuous band of electronic states, in 
agreement with the fact that zero level is insensitive to field’s inhomogeneity [25]. At higher E, there are 
multiple gaps with SE >100 K. The relatively small gaps are due to the weak shear strain induced in this 
geometry (Am <0.1%). By improving the design of strained superlattices, it must be possible to achieve much 
larger gaps. We believe that the suggested strategies to observe the pseudo-Landau gaps and QHE are 
completely attainable and will be realized sooner rather than later.
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SUPPLEMENTARY INFORMATION:
Energy gaps and zero-field quantum Hall effect in graphene by strain engineering

F. Guinea, M. I. Katsnelson, A. K. Geim

I. Let us explain first how the two dimensional elasticity theory was used to find the shape shown in Fig. 1d 
of the main text.
The distribution of stress ° in  a two dimensional case is known to be independent of material’s Poisson ratio 
[S1]. The distortions that determine the gauge field are proportional to a and given by

°  - °  oxx yy xy /o i \“«  -  u yy = --------- —, u = ~ L- , (S1)
yy 2 ^  ^  2 ^

where j  is the shear modulus. Its value for graphene is « 10 eV/A2 (see ref. [S2]).

According to equations (1) and (3) of the main text and after choosing a coordinate system such that the x- 
axis coincides with one of the zigzag directions, we find that the uniformity of pseudo-magnetic field 
requires the following stress distribution

° -  = - o , = Cy (S2)
0  xy = CX

where C is a constant.
Let us find a boundary at which this stress distribution creates only normal forces. We will use polar 
coordinates in which the boundary is described as r = r(d) with the normal vector (nx (6\  ny (6)). Then, the
condition that the forces are strictly normal to the boundary reads

°xxnx +°xyny = f  fafyx 

°xynx +°yyny = f  (# K
This means that the stress tensor at this boundary has the following structure

(S3).

° j  = 2 f  n1n] -  2 Sv J (S4).

This equation has a solution if

(°xx -  f  t°yy  -  f ) °  xy'  = 0
or, substituting our sigma’s, it can be re-written as f  (6) = ±Cr (6 ) .

n ± r + y  ± 1 + sin 6 n dy
Then, —  = ---------= -------------  and, at the same time, —  = ----- . Coming back to the polar coordinates,

ny x  cos 6 ny dx
we find the following equation for the required shape

d  ln r = sin6 + cos26 (S5)
. 5).

d 6  cos6±  sin 26
Its solution

const x
r (6) = u ---------- =---------- v -------------- (S6)[(cos 6 / 2 + sin 6 / 2)(± 1 + 2sin 6 )

is plotted in Fig. 1d. The required distribution of normal forces is given by F (6) c  ± r( )  where sign ± 
indicates that uniform BS can be achieved by both compression and stretching.

II. To calculate the distribution of pseudo-magnetic field BS, which is shown in Fig. 2a, we have solved the 
corresponding elasticity problems numerically.
The stress distribution ° ij(r) induced inside the hexagon in Fig. 2a is caused by forces F  applied at the 
perimeter in the direction normal to the edge. They are either zero or constant for different hexagon sides.
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The stress distribution can be written as ° ij (r ) = Fs. (r /L ) where L is the length of the hexagon side. Using 

equation (S1) we can then find the strain distribution in graphene. To calculate s . (u), we have used a
triangular mesh with 35 nodes along each side of the hexagon and the central forces acting between the 
nearest neighbour nodes. This has yielded BS plotted in Fig. 2a. Another example of pseudo-magnetic field in 
a strained graphene sample is shown below (Fig. S1).
The electronic states inside the hexagon in Fig. 2b were calculated by using a honeycomb lattice with the 
same periodicity as the triangular lattice used to obtain the induced strain in Fig. 2a. In order to make these 
calculations applicable to hexagons with sides larger than 35 graphene lattice constants a, we have exploited 
the scaling properties of the low energy eigenstates of the Dirac equation in effective gauge field A. The 
eigenenergies s i in a lattice of length L = N  x a described by hopping parameters t. = t + Atij are related

to those in a lattice with L ’ = N ’x a  and hopping parameters t = t ’ + At', by s\ = s i x N /N ' provided that 

t'y = t x N /N ' + Atij x N '/ N . This scaling relationship ensures that the Fermi velocity and the flux 
distribution remain the same within the two lattices. The equivalence between the two systems is valid only 
for s[ << t ' and Atj << t '. These constraints have limited the maximum size that could be studied in our

work to about L ' « 10 x N  x a and maximum strain to A ; 0.01.

Figure S1. Distribution of BS inside a graphene disk stretched along the <100> axes indicated by the red 
arrows. The colour scheme is the same as in Fig. 2a. The white (blank) areas correspond to divergences in 
the induced strain and BS because the forces are applied locally, at three points along the perimeter. In the 
real situation, these divergences would correspond to high values of BS, which depend on detailed 
distribution of stress at the sample boundary.

III. An interesting alternative to generate the pseudo-magnetic field is to apply a constant pressure P to 
graphene suspended over an aperture with designed geometry. In this case, BS can be calculated as follows. 
The distribution of in-plane u(x,y) and out-of-plane h(x,y) deformations can be found numerically by 
minimization of the free energy [S3]

F  =K  ƒ d x d y (  2h) + 2  ƒ dxdy(2^ufj + A u2) - p |  dxdyh  (S6),

where k , A, ju are the bending rigidity and the two in-plane elastic constants, respectively, and

1
ua = ~  2

dui
dx.

+ -
du. dh dh

- + -
dxi dxi dx

(S7)
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is the deformation tensor. If out-of-plane displacements are larger than the length scale given by^Jk / u  ,
which is of the order of the interatomic distance a, we can generally neglect the first term in equation (S6) 
[S1].
Assuming that a graphene membrane covers an aperture of a characteristic size L, the out-of-plane 
deformations can be represented as

h(x, y  ) = L
1/3

u
h  f x  , y  ,v

I L L ,
(S8)

where H  is the dimensionless function that depends on the membrane’s geometry, and v the Poisson ratio. 
Following refs. [S4-S6], we find that equation (S8) leads to the pseudo-magnetic field

b s (x  y  )= fi-1faL

2/3
O 0 fP L ^

u
b  f x  , z  ,v

I L L j
(S9)

where O 0 =rihc /|e| is the flux quantum and, to avoid a bulky expression, we introduce another 

dimensionless function B  that relates to H  .

Figure S2. Deformation and pseudo-magnetic field induced in graphene suspended over a triangular 
aperture. (a) Height profile H  according to equation (S8). (b) Pseudo-magnetic field B  for the deformation 
shown in a. The spatial scale for both plots is given in units L .

a

We have calculated H  (x, y ) and B  (x, y) numerically for the case of an equilateral triangular aperture with 
the sides normal to the <100> axes of the graphene membrane. Our results in Figure S2 demonstrate that the 
pseudo-magnetic field is nearly uniform inside the hole, yielding B  of about 0.3. Assuming L = 100 nm and 
P = 100 atm, we find BS «4 T. The induced strain can be estimated as (PL / u )2 3and, at this pressure, 
reaches only a few percent, that is, even higher BS can be achieved at higher P . Note that the pressure on a 
suspended membrane can also be induced by electric field [S6]. In terms of charge density n, this pressure is
given by P = 2n(ne)2, and P =100 atm corresponds to n « 8x1012 cm-2.

IV. To calculate H  and B  in Figure S2, we have employed the elastic lattice model described previously in 
section II. We have taken a triangular lattice with nodes {m, n} placed at positions rmn =(m + n / 2 , ^ n  /2 ) 
where m,n are integers. For each node, we assume displacement umn . The elastic energy of the lattice is the 
sum of energies over all the springs connecting nearest neighbour nodes, which are given by
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terms pinop = pin \uop\ , and the constant pressure (force) is applied in z direction. The calculations were

]K a/3
s k/.m„ = — (  + u,, -  rmn -  u \  -11 where K  is related to the elastic constants as A = u  = ----K  [S7]. Thekl,mn 2 k, mn mn\ / 4

pinning of the graphene sheet to the scaffold at the perimeter nodes {o, p }  is described by adding 

K_p
2

done for a membrane with 820 nodes (L = 40), K  = 1 and K pin = 100. The numerical results show that

max [ h (x ,y ) «  0.15 ± 0.03 and the field varies slowly inside the hole, with an average

(|B(x ,y )  « 0.3 ± 0.03. Note that the triangular-lattice model implies A = u  and, therefore, v = 1/3 . In

graphene, the Poisson ratio is ~0.15 [S2] but we do not expect that this discrepancy would result in 
significantly different values of H  , B  and BS.

V. In the following, we estimate a mixing rate for counter-propagating valley-polarized edge states.
In the case of a singly-charged impurity, the matrix element that determines the backscattering is given by
(k+ |e7 |f| k^j « e2a (the wavefunctions are assumed to be extended along the edge channel). The density of

states is D (E )«  vFl B, where l B is the width of the edge channel and vF the Fermi velocity. Then, the 
reflection coefficient R into another valley can be estimated in the Born approximation as

R « (e 2 /v F ) )a /lB )2. The number of impurities per unit length is n1D « n l B where n is the impurity 
concentration. The transmission decays with the channel length ,  as

T « exp(-Rn1D/) « ex p [-(e^vF ) na2//1 B ]. For graphene, e2/v F « 1, and the mean free path in our one- 
channel one-dimensional problem becomes of the same order of magnitude as the localization 
length^ « l Bj(na2). For typical Bs =10T ( l B « 8nm) and n « 10n cm-2, we find £ « 102 - 103 ^m.
In the case of edge roughness, it can be modeled by a succession of vacancies. We approximate each 
vacancy by a local potential with a strength comparable to the bandwidth of the n electrons, vF/a  . Using
the Born approximation, we find that the scattering matrix element is (k+ |vF/a | k_ ) «  vFa and

R « a V  l  B 2 , so that the mean free path is now £ « (l B 2 / a 2)/n1D . The density of defects (vacancies) n1D 
is expected to be strongly sample dependent. In the worst case scenario of atomic-scale edge roughness, 
n1D « 10 per nm and we still find £ « 102 -  103nm . The reason for this is that the scattering is suppressed 
by the smallness of a/1B . Note that edge roughness does not influence the strain-induced Landau 
quantization in graphene’s interior.
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