526 research outputs found

    High temperature elastic anisotropy of the perovskite and post-perovskite polymorphs of Al2O3

    Get PDF
    Finite temperature ab initio molecular dynamics calculations were performed to determine the high temperature elastic and seismic properties of the perovskite and post-perovskite phases of pure end-member Al2O3. The post-perovskite phase exhibits very large degrees of shear-wave splitting. The incorporation of a few mole percent of Al2O3 into MgSiO3 is predicted to have little effect on the perovskite to post-perovskite phase transition pressure and seismic properties of the post-perovskite phase; although a small difference in shear-wave splitting may be observable

    Robert Frost’s Ulteriority: Saying One Thing in Terms of Another – The Inexpressible

    Get PDF
    Robert Frost’s poetry, which is famously rich in double meaning—saying one thing but meaning something else—is also concerned with pragmatism. Pragmatism implies that there is no one fundamental universal truth. I contend that Robert Frost’s poetry says that duplicity of meaning, or ulteriority, is something to be embraced. Frost wants the uncertainty of meaning to be understood by the reader as vital to life and the mind’s processes. The simple fact that so many readers search for the hidden meanings in his poetry justly proves this point. As a pragmatist, Frost was aware that the process of getting to a truth was far more important than actually finding it, and more than just standard literary concepts of irony and metaphor lay behind Frost’s ulteriority. Instead, his poetry carves a special idea of meaning out of pragmatism. He achieves this through various routes of ulteriority that stem from each reader’s individual interpretations. Frost’s ulteriority demands that the reader draw connections between the literal and the implied. When viewed through the lens of pragmatism, his poetry proves to be as interested in the literal as in the implicit meanings and topics he engages. In this thesis, then, I examine two poems, “Dust of Snow,” and “For Once, Then, Something,” both of which use ambiguous language that operates on many different levels. Also, both poems engage the reader asking that each reader discover their own meaning, rather than a hidden “true” one that the poem covers up with irony and metaphor

    Performance, physiological, and oculometer evaluation of VTOL landing displays

    Get PDF
    A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Physiological, visual response, and conventional flight performance measures were recorded for landing approaches performed in the NASA Visual Motion Simulator (VMS). Three displays (two computer graphic and a conventional flight director), three crosswind amplitudes, and two motion base conditions (fixed vs. moving base) were tested in a factorial design. Multivariate discriminant functions were formed from flight performance and/or visual response variables. The flight performance variable discriminant showed maximum differentation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus represent higher workload levels

    Iron-rich carbonates stabilized by magnetic entropy at lower mantle conditions

    Get PDF
    Constraining the flux of carbon in and out of the interior of the Earth due to long-term geological processes is important, because of the influence that it has on climate change. On timescales of billions of years, host minerals such as carbonate phases could play a significant role in the global carbon cycle, transporting carbon into the lower mantle as a component of subducting slabs. We use density functional theory based calculations to study the high-pressure, high-temperature phase stability of Mg1-xFexCO3. Our results show that iron-rich phases, where carbon is in tetrahedral coordination, are only stable at lower mantle conditions due to their magnetic entropy, which is also responsible for the unusual shape of their phase boundary. Low-pressure carbonate phases are found to be highly anisotropic, but high-pressure carbonate phases are not, which has important implications for their seismic detectability. Our work confirms that future discussions of the global carbon cycle should include the deep Earth

    Detente or Razryadka? The Kissinger-Dobrynin Telephone Transcripts and Relaxing American-Soviet Tensions, 1969-1977.

    Get PDF
    This dissertation argues that through a secret backchannel, US National Security Adviser and later Secretary of State Henry Kissinger and Soviet Ambassador to the US Anatoly Dobrynin formed a relationship which provided the empathy needed to bridge many of the ideological differences between their two countries. It examines transcripts of their telephone conversations from 1969-1977 when the United States and the Soviet Union engaged in detente, or a relaxation of tensions, during the Cold War. The dissertation concludes that the Kissinger-Dobrynin backchannel serves as a case study of the effectiveness of back channels in international diplomacy

    Thermal Conductivity of Periclase (MgO) from First Principles

    Get PDF
    We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative of the Earth's core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative a = (partial derivative lnk/partial derivative ln rho)(Tau) = 4.6 +/- 1.2 and that k = 20 +/- 5 Wm(-1) K-1 at the core-mantle boundary, while also finding good agreement with extant experimental data at much lower pressures

    Electronic spin transitions and the seismic properties of ferrous iron-bearing MgSiO3 post-perovskite

    Get PDF
    The elastic constants of post-perovskite of chemical composition Mg0.9375Fe0.0625SiO3 and Mg0.8750Fe0.1250SiO3 have been calculated at 0 K and 136 GPa using ab initio methods. For both compositions studied, iron remains in a high-spin state below 180 GPa at 0 K. The effect of spin state on elastic properties is small. Logarithmic derivations of isotropic wave velocities and density with respect to ferrous iron content are similar to those predicted from pure end-members. Citation: Stackhouse, S., J. P. Brodholt, D. P. Dobson, and G. D. Price ( 2006), Electronic spin transitions and the seismic properties of ferrous iron-bearing MgSiO3 post-perovskite

    Thermoelastic properties of MgSiO3-majorite at high temperatures and pressures: A first principles study

    Get PDF
    As the major component of garnet, the second most abundant phase in Earth's transition zone, MgSiO3-majorite plays a fundamental role in controlling the state and dynamics of Earth's mantle. However, due to challenges of experiments and simulations, there are still very limited data on the elastic properties of MgSiO3-majorite at simultaneously high temperatures and pressures. In this study, we have carried out extensive first principles calculations to determine the thermoelastic properties of MgSiO3-majorite up to 2000 K and 40 GPa. We find that the elastic constants of MgSiO3-majorite change significantly over the temperature and pressure range studied, with noticeable non-linearities in their pressure dependences. The seismic anisotropy of MgSiO3-majorite is high and generally increases with pressure. It is much higher than that of the other end-members of garnet and ringwoodite, which makes it the most anisotropic mineral in assemblages expected in the lower transition zone. Based on our calculated elastic moduli and with careful elimination of systematic errors, we establish a third-order Birch-Murnaghan-Mie-Grüneisen model for MgSiO3-majorite with the parameters: V0 = 114.1 cm3/mol, K0 = 163.6 GPa, G0 = 86.4 GPa, K0′ = 4.44, G0′ = 1.16, γ0 = 1.08, q0 = 0.48, ηS0 = 0.76, and θ0 = 822.5 K. Integrating our results into a thermodynamic model able to predict the properties of mantle assemblages, we find that a pyrolite composition produces velocities that agree with the seismic model AK135 in the upper transition zone. In the lower transition zone, a pyrolite composition fits well with some specific local observations, but a mechanical mixture with 18% basalt and 82% harzburgite is in better agreement with the global seismic model PREM. The much larger abundance of MgSiO3-majorite in the garnet phase of harzburgite suggests that the anisotropy in the lower transition zone may not be negligible and would be observable at least in the heterogeneous zones near subducting slabs

    Comparison of radiative energy flows in observational datasets and climate modeling

    No full text
    This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10 W m-2 each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30 W m-2 over trade wind cumulus regions, yet smaller CRE by about -30 W m-2 over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15 W m-2 smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference. © 2016 American Meteorological Society

    NASA Prediction of Worldwide Energy Resource High Resolution Meteorology Data For Sustainable Building Design

    Get PDF
    A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones
    • …
    corecore