research

Performance, physiological, and oculometer evaluation of VTOL landing displays

Abstract

A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Physiological, visual response, and conventional flight performance measures were recorded for landing approaches performed in the NASA Visual Motion Simulator (VMS). Three displays (two computer graphic and a conventional flight director), three crosswind amplitudes, and two motion base conditions (fixed vs. moving base) were tested in a factorial design. Multivariate discriminant functions were formed from flight performance and/or visual response variables. The flight performance variable discriminant showed maximum differentation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus represent higher workload levels

    Similar works