25 research outputs found

    Identification of new participants in the rainbow trout (Oncorhynchus mykiss) oocyte maturation and ovulation processes using cDNA microarrays

    Get PDF
    BACKGROUND: The hormonal control of oocyte maturation and ovulation as well as the molecular mechanisms of nuclear maturation have been thoroughly studied in fish. In contrast, the other molecular events occurring in the ovary during post-vitellogenesis have received far less attention. METHODS: Nylon microarrays displaying 9152 rainbow trout cDNAs were hybridized using RNA samples originating from ovarian tissue collected during late vitellogenesis, post-vitellogenesis and oocyte maturation. Differentially expressed genes were identified using a statistical analysis. A supervised clustering analysis was performed using only differentially expressed genes in order to identify gene clusters exhibiting similar expression profiles. In addition, specific genes were selected and their preovulatory ovarian expression was analyzed using real-time PCR. RESULTS: From the statistical analysis, 310 differentially expressed genes were identified. Among those genes, 90 were up-regulated at the time of oocyte maturation while 220 exhibited an opposite pattern. After clustering analysis, 90 clones belonging to 3 gene clusters exhibiting the most remarkable expression patterns were kept for further analysis. Using real-time PCR analysis, we observed a strong up-regulation of ion and water transport genes such as aquaporin 4 (aqp4) and pendrin (slc26). In addition, a dramatic up-regulation of vasotocin (avt) gene was observed. Furthermore, angiotensin-converting-enzyme 2 (ace2), coagulation factor V (cf5), adam 22, and the chemokine cxcl14 genes exhibited a sharp up-regulation at the time of oocyte maturation. Finally, ovarian aromatase (cyp19a1) exhibited a dramatic down-regulation over the post-vitellogenic period while a down-regulation of Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (cmah) was observed at the time of oocyte maturation. CONCLUSION: We showed the over or under expression of more that 300 genes, most of them being previously unstudied or unknown in the fish preovulatory ovary. Our data confirmed the down-regulation of estrogen synthesis genes during the preovulatory period. In addition, the strong up-regulation of aqp4 and slc26 genes prior to ovulation suggests their participation in the oocyte hydration process occurring at that time. Furthermore, among the most up-regulated clones, several genes such as cxcl14, ace2, adam22, cf5 have pro-inflammatory, vasodilatory, proteolytics and coagulatory functions. The identity and expression patterns of those genes support the theory comparing ovulation to an inflammatory-like reaction

    Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    Get PDF
    BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Inhibition of cancer cell invasion and metastasis by genistein

    Get PDF
    Genistein is a small, biologically active flavonoid that is found in high amounts in soy. This important compound possesses a wide variety of biological activities, but it is best known for its ability to inhibit cancer progression. In particular, genistein has emerged as an important inhibitor of cancer metastasis. Consumption of genistein in the diet has been linked to decreased rates of metastatic cancer in a number of population-based studies. Extensive investigations have been performed to determine the molecular mechanisms underlying genistein’s antimetastatic activity, with results indicating that this small molecule has significant inhibitory activity at nearly every step of the metastatic cascade. Reports have demonstrated that, at high concentrations, genistein can inhibit several proteins involved with primary tumor growth and apoptosis, including the cyclin class of cell cycle regulators and the Akt family of proteins. At lower concentrations that are similar to those achieved through dietary consumption, genistein can inhibit the prometastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the transforming growth factor (TGF)-β signaling pathway. Several in vitro findings have been corroborated in both in vivo animal studies and in early-phase human clinical trials, demonstrating that genistein can both inhibit human cancer metastasis and also modulate markers of metastatic potential in humans, respectively. Herein, we discuss the variety of mechanisms by which genistein regulates individual steps of the metastatic cascade and highlight the potential of this natural product as a promising therapeutic inhibitor of metastasis

    An Early Juvenile Hominin Skeleton from Dikika, Ethiopia

    No full text
    Understanding changes in ontogenetic development is central to the study of human evolution. With the exception of Neanderthals, the growth patterns of fossil hominins have not been studied comprehensively because the fossil record currently lacks specimens that document both cranial and postcranial development at young ontogenetic stages. Here we describe a well-preserved 3.3-million-year-old juvenile partial skeleton of Australopithecus afarensis discovered in the Dikika research area of Ethiopia. The skull of the approximately three-year-old presumed female shows that most features diagnostic of the species are evident even at this early stage of development. The find includes many previously unknown skeletal elements from the Pliocene hominin record, including a hyoid bone that has a typical African ape morphology. The foot and other evidence from the lower limb provide clear evidence for bipedal locomotion, but the gorilla-like scapula and long and curved manual phalanges raise new questions about the importance of arboreal behaviour in the A. afarensis locomotor repertoire

    Donor-Acceptor Dyes for Organic Photovoltaics

    No full text
    Small-molecule pi-systems bearing donor (D) and acceptor (A) groups constitute an interesting class of dyes because of their tunable strong absorption, which covers the visible and near-infrared range. The dipolarity associated with D-A structures directs antiparallel stacking arrangements in the solid state, thus reducing the dipolar disorder at the supramolecular level. Their straightforward synthesis and purification make them good candidates for photovoltaic application with power conversion efficiencies > 6 %. This review summarizes the application of D-A dyes, and in particular merocyanines, in organic photovoltaics in recent years

    A metabolomic analysis of omega-3 fatty acid-mediated attenuation of western diet-induced nonalcoholic steatohepatitis in LDLR-/- mice.

    No full text
    Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease and a risk factor for cirrhosis, hepatocellular carcinoma and liver failure. Previously, we reported that dietary docosahexaenoic acid (DHA, 22:6,n-3) was more effective than eicosapentaenoic acid (EPA, 20:5,n-3) at reversing western diet (WD) induced NASH in LDLR(-/-) mice.Using livers from our previous study, we carried out a global non-targeted metabolomic approach to quantify diet-induced changes in hepatic metabolism.Livers from WD + olive oil (WD + O)-fed mice displayed histological and gene expression features consistent with NASH. The metabolomic analysis of 320 metabolites established that the WD and n-3 polyunsaturated fatty acid (PUFA) supplementation had broad effects on all major metabolic pathways. Livers from WD + O-fed mice were enriched in saturated (SFA) and monounsaturated fatty acids (MUFA), palmitoyl-sphingomyelin, cholesterol, n-6 PUFA, n-6 PUFA-containing phosphoglycerolipids, n-6 PUFA-derived oxidized lipids (12-HETE) and depleted of C20-22 n-3 PUFA-containing phosphoglycerolipids, C20-22 n-3 PUFA-derived oxidized lipids (18-HEPE, 17,18-DiHETE) and S-lactoylglutathione, a methylglyoxal detoxification product. WD + DHA was more effective than WD + EPA at attenuating WD + O-induced changes in NASH gene expression markers, n-6 PUFA and oxidized lipids, citrate and S-lactosyl glutathione. Diet-induced changes in hepatic MUFA and sphingolipid content were associated with changes in expression of enzymes involved in MUFA and sphingolipid synthesis. Changes in hepatic oxidized fatty acids and S-lactoylglutathione, however, correlated with hepatic n-3 and n-6 C20-22 PUFA content. Hepatic C20-22 n-3 PUFA content was inversely associated with hepatic α-tocopherol and ascorbate content and positively associated with urinary F2- and F3-isoprostanes, revealing diet effects on whole body oxidative stress.DHA regulation of hepatic SFA, MUFA, PUFA, sphingomyelin, PUFA-derived oxidized lipids and S-lactoylglutathione may explain the protective effects of DHA against WD-induced NASH in LDLR(-/-) mice
    corecore