249 research outputs found
Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data
Determining the functional structure of biological networks is a central goal
of systems biology. One approach is to analyze gene expression data to infer a
network of gene interactions on the basis of their correlated responses to
environmental and genetic perturbations. The inferred network can then be
analyzed to identify functional communities. However, commonly used algorithms
can yield unreliable results due to experimental noise, algorithmic
stochasticity, and the influence of arbitrarily chosen parameter values.
Furthermore, the results obtained typically provide only a simplistic view of
the network partitioned into disjoint communities and provide no information of
the relationship between communities. Here, we present methods to robustly
detect coregulated and functionally enriched gene communities and demonstrate
their application and validity for Escherichia coli gene expression data.
Applying a recently developed community detection algorithm to the network of
interactions identified with the context likelihood of relatedness (CLR)
method, we show that a hierarchy of network communities can be identified.
These communities significantly enrich for gene ontology (GO) terms, consistent
with them representing biologically meaningful groups. Further, analysis of the
most significantly enriched communities identified several candidate new
regulatory interactions. The robustness of our methods is demonstrated by
showing that a core set of functional communities is reliably found when
artificial noise, modeling experimental noise, is added to the data. We find
that noise mainly acts conservatively, increasing the relatedness required for
a network link to be reliably assigned and decreasing the size of the core
communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1
was not uploaded but is available by contacting the author. 27 pages, 5
figures, 15 supplementary file
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Quantifying Missing Heritability at Known GWAS Loci
Recent work has shown that much of the missing heritability of complex traits can be resolved by estimates of heritability explained by all genotyped SNPs. However, it is currently unknown how much heritability is missing due to poor tagging or additional causal variants at known GWAS loci. Here, we use variance components to quantify the heritability explained by all SNPs at known GWAS loci in nine diseases from WTCCC1 and WTCCC2. After accounting for expectation, we observed all SNPs at known GWAS loci to explain 1.29 X more heritability than GWAS-associated SNPs on average (P = 3.3 X 10[superscript -5]). For some diseases, this increase was individually significant:2.07 X for Multiple Sclerosis (MS) (P = 6.5 X 10 [superscript -9]) and for Crohn's Disease (CD) (P = 1.3 X 10[superscript -3]); all analyses of autoimmune diseases excluded the well-studied MHC region. Additionally, we found that GWAS loci from other related traits also explained significant heritability. The union of all autoimmune disease loci explained 7.15 X more MS heritability than known MS SNPs (P 20,000 Rheumatoid Arthritis (RA) samples typed on ImmunoChip, with 2.37 X more heritability from all SNPs at GWAS loci (P = 2.3 X 10[superscript -6]) and more heritability from all autoimmune disease loci (P < 1 X 10[superscript -16]) compared to known RA SNPs (including those identified in this cohort). Our methods adjust for LD between SNPs, which can bias standard estimates of heritability from SNPs even if all causal variants are typed. By comparing adjusted estimates, we hypothesize that the genome-wide distribution of causal variants is enriched for low-frequency alleles, but that causal variants at known GWAS loci are skewed towards common alleles. These findings have important ramifications for fine-mapping study design and our understanding of complex disease architecture.National Institutes of Health (U.S.) (Grant R03HG006731)National Institutes of Health (U.S.) (Fellowship F32GM106584
Three-dimensional aspects of superficial disseminated porokeratosis with scanning electron microscopy
Topical Gene Electrotransfer to the Epidermis of Hairless Guinea Pig by Non-invasive Multielectrode Array
Topical gene delivery to the epidermis has the potential to be an effective therapy for skin disorders, cutaneous cancers, vaccinations and systemic metabolic diseases. Previously, we reported on a non-invasive multielectrode array (MEA) that efficiently delivered plasmid DNA and enhanced expression to the skin of several animal models by in vivo gene electrotransfer. Here, we characterized plasmid DNA delivery with the MEA in a hairless guinea pig model, which has a similar histology and structure to human skin. Significant elevation of gene expression up to 4 logs was achieved with intradermal DNA administration followed by topical non-invasive skin gene electrotransfer. This delivery produced gene expression in the skin of hairless guinea pig up to 12 to 15 days. Gene expression was observed exclusively in the epidermis. Skin gene electrotransfer with the MEA resulted in only minimal and mild skin changes. A low level of human Factor IX was detected in the plasma of hairless guinea pig after geneelectrotransfer with the MEA, although a significant increase of Factor IX was obtained in the skin of animals. These results suggest geneelectrotransfer with the MEA can be a safe, efficient, non-invasive skin delivery method for skin disorders, vaccinations and potential systemic diseases where low levels of gene products are sufficient
Autoimmune inflammatory disorders, systemic corticosteroids and pneumocystis pneumonia: A strategy for prevention
BACKGROUND: Pneumocystis pneumonia (PCP) is an increasing problem amongst patients on immunosuppression with autoimmune inflammatory disorders (AID). The disease presents acutely and its diagnosis requires bronchoalveolar lavage in most cases. Despite treatment with intravenous antibiotics, PCP carries a worse prognosis in AID patients than HIV positive patients. The overall incidence of PCP in patients with AID remains low, although patients with Wegener's granulomatosis are at particular risk. DISCUSSION: In adults with AID, the risk of PCP is related to treatment with systemic steroid, ill-defined individual variation in steroid sensitivity and CD4+ lymphocyte count. Rather than opting for PCP prophylaxis on the basis of disease or treatment with cyclophosphamide, we argue the case for carrying out CD4+ lymphocyte counts on selected patients as a means of identifying individuals who are most likely to benefit from PCP prophylaxis. SUMMARY: Corticosteroids, lymphopenia and a low CD4+ count in particular, have been identified as risk factors for the development of PCP in adults with AID. Trimethoprim-sulfamethoxazole (co-trimoxazole) is an effective prophylactic agent, but indications for its use remain ill-defined. Further prospective trials are required to validate our proposed prevention strategy
Analysis of copy number variation at DMBT1 and age-related macular degeneration
BACKGROUND:
DMBT1 is a gene that shows extensive copy number variation (CNV) that alters the number of bacteria-binding domains in the protein and has been shown to activate the complement pathway. It lies next to the ARMS2/HTRA1 genes in a region of chromosome 10q26, where single nucleotide variants have been strongly associated with age-related macular degeneration (AMD), the commonest cause of blindness in Western populations. Complement activation is thought to be a key factor in the pathogenesis of this condition. We sought to investigate whether DMBT1 CNV plays any role in the susceptibility to AMD.
METHODS:
We analysed long-range linkage disequilibrium of DMBT1 CNV1 and CNV2 with flanking single nucleotide polymorphisms (SNPs) using our previously published CNV and HapMap Phase 3 SNP data in the CEPH Europeans from Utah (CEU). We then typed a large cohort of 860 AMD patients and 419 examined age-matched controls for copy number at DMBT1 CNV1 and CNV2 and combined these data with copy numbers from a further 480 unexamined controls.
RESULTS:
We found weak linkage disequilibrium between DMBT1 CNV1 and CNV2 with the SNPs rs1474526 and rs714816 in the HTRA1/ARMS2 region. By directly analysing copy number variation, we found no evidence of association of CNV1 or CNV2 with AMD.
CONCLUSIONS:
We have shown that copy number variation at DMBT1 does not affect risk of developing age-related macular degeneration and can therefore be ruled out from future studies investigating the association of structural variation at 10q26 with AMD
Genetics of rheumatoid arthritis: what have we learned?
Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting 0.5–1% of the population worldwide. The disease has a heterogeneous character, including clinical subsets of anti-citrullinated protein antibody (ACPA)-positive and APCA-negative disease. Although the pathogenesis of RA is poorly understood, progress has been made in identifying genetic factors that contribute to the disease. The most important genetic risk factor for RA is found in the human leukocyte antigen (HLA) locus. In particular, the HLA molecules carrying the amino acid sequence QKRAA, QRRAA, or RRRAA at positions 70–74 of the DRβ1 chain are associated with the disease. The HLA molecules carrying these “shared epitope” sequences only predispose for ACPA-positive disease. More than two decades after the discovery of HLA-DRB1 as a genetic risk factor, the second genetic risk factor for RA was identified in 2003. The introduction of new techniques, such as methods to perform genome-wide association has led to the identification of more than 20 additional genetic risk factors within the last 4 years, with most of these factors being located near genes implicated in immunological pathways. These findings underscore the role of the immune system in RA pathogenesis and may provide valuable insight into the specific pathways that cause RA
- …
