4,042 research outputs found

    A different perspective on canonicity

    Get PDF
    One of the most interesting aspects of Conceptual Structures Theory is the notion of canonicity. It is also one of the most neglected: Sowa seems to have abandoned it in the new version of the theory, and most of what has been written on canonicity focuses on the generalization hierarchy of conceptual graphs induced by the canonical formation rules. Although there is a common intuition that a graph is canonical if it is "meaningful'', the original theory is somewhat unclear about what that actually means, in particular how canonicity is related to logic. This paper argues that canonicity should be kept a first-class notion of Conceptual Structures Theory, provides a detailed analysis of work done so far, and proposes new definitions of the conformity relation and the canonical formation rules that allow a clear separation between canonicity and truth

    Optimization of circular orifice jets mixing into a heated cross flow in a cylindrical duct

    Get PDF
    To examine the mixing characteristics of circular jets in an axisymmetric can geometry, temperature measurements were obtained downstream of a row of cold jet injected into a heated cross stream. The objective was to obtain uniform mixing within one duct radius downstream of the leading edge of the jet orifices. An area weighted standard deviation of the mixture fraction was used to help quantify the degree of mixedness at a given plane. Non-reacting experiments were conducted to determine the influence of the number of jets on the mixedness in a cylindrical configuration. Results show that the number of orifices significantly impacts the mixing characteristics of jets injected from round hole orifices in a can geometry. Optimum mixing occurs when the mean jet trajectory aligns with the radius which divides the cross sectional area of the can into two equal parts at one mixer radius downstream of the leading edge of the orifice. The optimum number of holes at momentum-flux ratios of 25 and 52 is 10 and 15 respectively

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Steps in the bacterial flagellar motor

    Get PDF
    The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps [Sowa et al. (2005) Nature 437, 916--919]. Here we propose a simple physical model that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties, and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. Our model also predicts a sublinear torque-speed relationship at low torque, and a peak in rotor diffusion as a function of torque

    Learning about knowledge: A complex network approach

    Full text link
    This article describes an approach to modeling knowledge acquisition in terms of walks along complex networks. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks, i.e. networks composed of successive interconnected layers, arise naturally as a consequence of compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks, i.e. unreachable nodes, the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barab\'asi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaux of knowledge stagnation in the case of the preferential movements strategy in presence of conditional edges.Comment: 18 pages, 19 figure

    An Introduction to Ontologies and Ontology Engineering

    Get PDF
    In the last decades, the use of ontologies in information systems has become more and more popular in various fields, such as web technologies, database integration, multi agent systems, natural language processing, etc. Artificial intelligent researchers have initially borrowed the word “ontology” from Philosophy, then the word spread in many scientific domain and ontologies are now used in several developments. The main goal of this chapter is to answer generic questions about ontologies, such as: Which are the different kinds of ontologies? What is the purpose of the use of ontologies in an application? Which methods can I use to build an ontology

    On the emergent Semantic Web and overlooked issues

    Get PDF
    The emergent Semantic Web, despite being in its infancy, has already received a lotof attention from academia and industry. This resulted in an abundance of prototype systems and discussion most of which are centred around the underlying infrastructure. However, when we critically review the work done to date we realise that there is little discussion with respect to the vision of the Semantic Web. In particular, there is an observed dearth of discussion on how to deliver knowledge sharing in an environment such as the Semantic Web in effective and efficient manners. There are a lot of overlooked issues, associated with agents and trust to hidden assumptions made with respect to knowledge representation and robust reasoning in a distributed environment. These issues could potentially hinder further development if not considered at the early stages of designing Semantic Web systems. In this perspectives paper, we aim to help engineers and practitioners of the Semantic Web by raising awareness of these issues

    Microsatellite genotyping clarified conspicuous accumulation of Candida parapsilosis at a cardiothoracic surgery intensive care unit.

    Get PDF
    Contains fulltext : 124291.pdf (publisher's version ) (Open Access)Candida parapsilosis has become a significant cause of invasive fungal infections in seriously ill patients. Nosocomial outbreaks through direct and indirect contact have been described. The aim of this study was the molecular characterization of what appeared to be an ongoing C. parapsilosis outbreak at the cardiothoracic intensive care unit of the University Hospital of Vienna between January 2007 and December 2008. Using two different molecular typing methods-automated repetitive sequence-based PCR (DiversiLab; bioMerieux) and microsatellite genotyping-we investigated the genetic relationship of 99 C. parapsilosis isolates. Eighty-three isolates originated from the cardiothoracic intensive care unit, while 16 isolates were random control isolates from other intensive care units and a different Austrian hospital. The 99 C. parapsilosis isolates analyzed by repetitive-element PCR all showed identical genotypes, suggesting an ongoing outbreak. In contrast, microsatellite genotyping showed a total of 56 different genotypes. Two major genotypes were observed in 10 and 15 isolates, respectively, whereas another 13 genotypes were observed in 2 to 4 isolates each. Forty-one genotypes were observed only once. Closely related genotypes that differed in only a single microsatellite marker were grouped into clonal complexes. When it comes to C. parapsilosis, microsatellite genotyping is a more discriminative method than repetitive-element PCR genotyping to investigate outbreaks.1 november 201
    corecore