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A Di�erent Perspective on Canonicity

Michel Wermelinger

Departamento de Inform�atica, Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

E-mail: mw@di.fct.unl.pt

Abstract. One of the most interesting aspects of Conceptual Structures

Theory is the notion of canonicity. It is also one of the most neglected:

Sowa seems to have abandoned it in the new version of the theory, and

most of what has been written on canonicity focuses on the generalization

hierarchy of conceptual graphs induced by the canonical formation rules.

Although there is a common intuition that a graph is canonical if it is

\meaningful", the original theory is somewhat unclear about what that

actually means, in particular how canonicity is related to logic.

This paper argues that canonicity should be kept a �rst-class notion

of Conceptual Structures Theory, provides a detailed analysis of work

done so far, and proposes new de�nitions of the conformity relation

and the canonical formation rules that allow a clear separation between

canonicity and truth.

Topics: Conceptual Graph Theory, Knowledge Representation, Ontolo-

gies

1 Introduction

The development of Conceptual Structures Theory (CST) has been driven to

great extent by natural language and its meaningfulness levels [8, p. 94]: gib-

berish; ungrammatical sequence; violation of selectional constraints; logically

inconsistent; possibly false; empirically true. Syntax distinguishes the �rst two

levels from the other ones, canonicity handles level 3, and logic the rest. Thus

canonicity provides the ontological level that draws the borderline between mean-

ingless and meaningful expressions (which are graphs in CST).

One could argue that syntax and logic are enough because any conceptual

graph that obeys the arity of relations can be translated into a syntactically

well-formed �rst-order formula and as such can be given a truth value. We feel

however that logic alone does not distinguish the di�erent \degrees" of falsehood:

\Pigs y" and \Portugal is a monarchy" are both false statements but not in the

same way. Any knowledge representation theory should provide a way to capture

our intuitions about such statements. In this paper, that role will be played by

the ontology. Besides its conceptual importance, it has practical advantages: it

can be shared by many knowledge bases; the knowledge representation system

becomes more exible and robust regarding arbitrary user input; processing an

expression becomes more e�cient.

Ideally, the ontology should be accompanied by two mechanisms: one to de-

rive all the meaningful expressions, and the other to check whether an expression



is meaningful. In CST the ontology is called canon, the derivation mechanism

is given by the canonical formation rules, the checking mechanism is projection,

and the meaningful expressions are the canonical graphs. A canon is speci�ed

by its types, markers, conformity relation and canonical basis. The conformity

relation indicates for each marker all the types to which it is compatible, while

the canonical basis is the initial set of graphs to which the canonical formation

rules are applied.

In spite of its conceptual and practical importance, canonicity has been sel-

dom a central theme of investigation.Most of the time only two notions \derived"

from the canonical formation rules have received attention: projection and the

generalization hierarchy. Only seldom have the knowledge representation aspects

of canonicity been investigated: what are meaningful graphs? how is canonicity

related to logic? This paper analyzes the work known to us, which can be sum-

marized as follows. The original theory regards conformant concepts (i.e. those

that obey the conformity relation) as true ones, while the canonical formation

rules preserve falsehood: hence the relationship to logic is unclear since there

are both true canonical graphs and true non-canonical graphs (and the same for

false graphs). Kocura [5] considers that truth implies canonicity and therefore

all non-canonical graphs must be false. Wermelinger [13] and Sexton [7] consider

a graph to be canonical if it obeys the relation signatures given in the canonical

basis. Finally, Sowa's new version of the theory [9] has no notion of canonicity:

the de�nitions of conformity relation, canon, and canonical graphs have disap-

peared, and the canonical formation rules are just an auxiliary de�nition used

by the inference rules.

This paper presents a di�erent perspective on canonicity which �ts better into

the three meaningfulness levels (syntax, ontology, logic). A level characterizes a

set of graphs, each level being a superset of the next one: canonical graphs are

conceptual graphs (i.e., syntactically well-formed graphs), and true and false

graphs are canonical. Seeing it the other way round, it does not make sense to

speak about the canonicity of a non-conceptual graph or about the truth value

of a non-canonical graph. To adhere to this principle, the conformity relation

and the canonical formation rules (and thus the de�nition of projection) will be

changed.

The structure of the paper is as follows. The next section is dedicated to the

conformity relation. In the original theory, if marker m conforms to type t then

\m is a t", i.e. m belongs to t's denotation. As will be seen, this interpretation

of conformity has several problems. To allow false graphs to be canonical (and

therefore conformant), the conformity relation will be relaxed.

The third section deals with the canonical basis. The main issue is to de�ne

what kinds of graphs the knowledge engineer may put into the canonical basis in

order to specify useful selectional constraints. There have been several proposals,

ranging from simple relation signatures to an arbitrary collection of graphs. We

analyze those proposals and conclude that Sowa's original de�nition is still the

most satisfactory one.

Section 4 handles the canonical formation rules. The original ones [8] only



specialize the graphs they are applied to, but in [9] they may also generalize

them. We follow the same approach because due to our principle true graphs

(handled in [11]) should be canonical. Therefore the inference rules should be a

special case of the formation rules. However, the formal de�nition of the latter

will be changed to allow them to be applied directly instead of through the

inference rules (as in [9]).

The last section characterizes canonical graphs in the usual two ways: using

the canonical formation rules or projection. The de�nition of the latter will

be extended to cope with the new de�nition of the former. An algorithm that

decides whether a graph is canonical or not will be given. It is almost identical

to the one for the original theory [6] and has the same complexity.

We use the following notational conventions: t and t

0

are concept types, i

is an individual marker, m is an individual marker or the generic marker *,

� is the subtype relation, and t ^ t

0

denotes the maximal common subtype of

both types. All references to pages (p. X) and to the original theory (Assump-

tion/Theorem/De�nition x:y:z) are to be understood in the context of [8]. The

de�nitions given in the paper will be rather informal, since the formal details

depend on the exact formalization of the basic notions (marker, type, concept,

relation, etc.). Due to lack of space we will only deal with CST in its simplest

form, assuming however that relation types may form a hierarchy [13]. The com-

plete formalization of canonicity [12] also deals with higher-order types, a marker

hierarchy including the absurd marker, contexts and coreference links.

2 The conformity relation

Sowa introduced the conformity relation :: as a test to be done when changing

a concept's type: \if #98077 is a cat then CAT :: #98077 is true; otherwise, it is

false"; in the second case \ ANIMAL: #98077 could not be restricted to CAT: #98077 "

(p. 87). The sentence quoted �rst makes it very clear that an individual conforms

to a type if and only if it belongs to the set denoted by the type. This is further

stressed by the formal de�nition (Assumption 3.3.3) which imposes the following

conditions:

1. for any concept t: m , t :: m;

2. if t � t

0

and t :: i, then t

0

:: i;

3. if t :: i and t

0

:: i, then t ^ t

0

:: i;

4. for any i, > :: i, but not ? :: i;

5. for any t, t :: �.

In fact, if we de�ne the conformity relation as the expression of the denotation

(formally, t :: m , m = * _ m 2 �t) then we easily get condition 5 from the

de�nition, and conditions 2 and 4 from the properties of �: �> is the universal

set, �? is the empty set, and t � t

0

implies �t � �t

0

.

As noted in [2], an individual marker cannot conform to two incompatible

types (i.e., t ^ t

0

= ?). Otherwise conditions 3 and 4 would contradict each

other. But the problem roots deeper. In fact, condition 3 implies that �(t^ t

0

) =



�(t)\�(t

0

) which is called the lattice-theoretic interpretation of the type hierarchy

in [1]. This contradicts the order-theoretic interpretation of Theorem 3.2.6: �(t^

t

0

) � �t \ �t

0

. Also, the lattice-theoretic approach has conceptual and practical

drawbacks: a maximal common subtype must be interpreted as the \implication"

of its supertypes, and the intersection of each pair of compatible types must be

represented by an explicit type, leading to an explosion of conceptually irrelevant

types.

Example 1. Consider a knowledge base about people, containing types for jobs

and family relationships. According to the lattice-theoretic interpretation, UNCLE =

SON ^ BROTHER means that every person which is a son and a brother is also

an uncle, clearly an undesired meaning. If TEACHER :: #Michael and FATHER ::

#Michael then the type FATHER-TEACHERmust exist for condition 3 to be satis-

�ed, even if there is no other teacher with children in the knowledge base.

Even if condition 3 is abandoned other problems remain. Condition 1 forces

every concept to be conformant. We will not impose this constraint as it is too

strong in our opinion. Furthermore, notice that ? :: * but not ? :: i. Logi-

cally, both are false statements since they correspond to 9x 2 �? and i 2 �?,

contradicting �? = ;. There is thus no valid reason to allow one but not the

other.

Furthermore, if the conformity relation is just the indication of the types each

individual marker is an instance of, then it is theoretically useless, because the

same e�ect can be obtained by axioms in the knowledge base: assert in the outer

context ? : * and t : i whenever t :: i . Applying the generalization inference

rule one gets t

0

: i for any t

0

� t (including t

0

= >) and t : * for any t. Also,

since the �rst-order rules of inference are consistent, the graph ? : i can never

be obtained. Thus conditions 2, 4, and 5 are satis�ed.

The real problem however is not of formal but of conceptual nature. If t :: i

means that \i is a t", then all false concepts will not be conformant and as

such cannot be generated by the canonical formation rules. As Sexton [7] noted,

this is not consistent with the statement \The formation rules enforce selectional

constraints, but they make no guarantee of truth or falsity" (p. 94). As a concrete

example, take the one on page 92: if BEAGLE :: #Snoopy then DOG: #Snoopy cannot

be restricted to COLLIE: #Snoopy since Snoopy is a beagle, not a collie. Sexton

remarks that the latter concept is a meaningful one and therefore should be

allowed in a canonical graph, although the individual marker does not belong to

the denotation of (i.e., conform to) the type.

Therefore, in this paper a new notion of conformity relation is proposed: a

marker m will conform to a type t if t : i should be part of a true or false graph.

Thus, conformity (as part of the broader notion of canonicity) does not imply

truth any longer. Conversely, it does not make sense to speak about the truth

or falsehood of a graph with non-conformant concepts.

Before presenting the formal de�nition, some observations are in order. First,

as ? : m is false for any m, it will be considered a conformant concept. Second,



if t : i is true, so is t

0

: i for any supertype t

0

; and if it is false, it is for any

subtype t

0

, too. To put it simply,

if t :: i then t

0

:: i for any t

0

� t or t

0

� t.

Formally, however, we cannot state it this way, because t :: i would imply > :: i

(and ? :: i) and therefore t

0

:: i for any type t

0

. In other words, any individ-

ual marker would conform to any type, thus making the conformity relation

meaningless. Even if we impose the restriction ? < t < > in the above rule, an

individual marker would still conform to concept types that are \zig-zag"-related

in the type hierarchy. To circumvent this, we split the conformity relation into

two relations: the base relation is given by the knowledge engineer and states for

each individual marker what are the most relevant types it should conform to;

the actual conformity relation is basically just the closure of the base relation

over subtypes and supertypes.

Assumption1. Given a relation R between concept types and markers, the

conformity relation :: is the smallest superset of R such that

{ for any m, > ::m and ? :: m;

{ for any t, t :: *;

{ for any t and m, if tRm and t � t

0

or t

0

� t, then t

0

:: m.

Relaxing the de�nition of conformity is not only theoretically more elegant,

it has also practical advantages: a conceptual graph processor can be made more

robust and it can indicate the source of errors precisely. Consider for exam-

ple a natural language processor that has to join the concepts MAN: #Lou and

WOMAN: #Lou . According to the original de�nition, the resulting concept ?: #Lou

does not obey the conformity relation and as such the join would fail (i.e. the

text would not be parsed). An implementation could provide some ad-hoc way

to indicate the source of error to the user, but it is always better to have a clean

theoretical framework, as is the case with the new de�nition: the concept is

meaningful, although false, and the absurd type clearly shows where the parsing

has produced an inconsistency.

3 The Canon

The conformity relation is only a small part of the overall de�nition of an on-

tology to be used by one or more knowledge bases. In Conceptual Structures

Theory the ontology is called canon and contains the types, the markers, the

conformity relation, and an initial set of well-formed graphs, the canonical basis

(Assumption 3.4.5). By applying the canonical formation rules to those graphs

one obtains all canonical graphs, i.e. all graphs that \are meaningful" (p. 91).

However, the Conceptual Catalog [8, Appendix B] assigns a canonical graph

to each concept or relation type in order to specify the selectional constraints

to be observed by each type. Besides not being part of the formal de�nition

of canonical basis, this association lead the Conceptual Structures community



to use the term \canonical graph" in two di�erent senses: (1) a graph that is

derivable from the canonical basis, and (2) the graph in the canonical basis that

is associated to a given type. Of course, these two senses are not incompatible,

since (2) implies (1). To make the distinction clear, the elements of the canonical

basis will be called base graphs.

The existence or not of associations between types and base graphs inu-

ences greatly the notion of canonical graph, because in the former case the base

graph of type t must project on any graph using t. As Willems pointed out

1

,

this leads to another dual view of the canonical basis: whether it represents se-

lectional constraints on the links between relations and concepts, or mandatory

\arguments" of types.

Example 2 (adapted from Willems). Consider these graphs, the �rst two being

base graphs:

1. ACT !

�

�

�

�

AGNT! ANIMATE

2. PERSON  

�

�

�

�

AGNT GIVE !

�

�

�

�

OBJ! OBJECT

#

�

�

�

�

RCPT ! PERSON

3. GIVE !

�

�

�

�

AGNT! PERSON: #John

If base graphs are not assigned to types, then graph 3 is canonical because it

can be derived from the �rst one. But if graph 2 is associated to concept type

GIVE, then graph 3 is no longer canonical as it is missing two arguments of the

verb.

Contrary to what Willems seems to imply, the problem is not the existence

of associations per se, but the kind of associations done. As seen, assigning base

graphs to concept types rules out meaningful graphs, that we would like to

consider canonical, on the ground of having only partial information. This is not

acceptable for a knowledge representation formalism. Moreover, we feel that the

\arguments" view of the canonical basis is more appropriate of a lexicon [10].

It is however possible to retain the \selectional constraint" view as long as

associations are restricted to relation types and if base graphs consist only of

a single relation. Thus each base graph states the \signature" of the associated

relation type, i.e. its arity and the maximal concept types of its arguments. This

kind of base graph is called star graph and was introduced in [2]. Graph 1 of

Example 2 could be the star graph of AGNT. This approach has been adopted by

[13] and extended to handle relation type hierarchies: if t � t

0

then the star graph

of relation type t

0

must project into the star graph of t. Although not apparent

at �rst sight, Sexton [7, Section VIII] also advocates the use of star graphs: \In

order for a graph to be canonical, the type of each arc of each conceptual relation

must be predicable [i.e., a supertype] of the type of the concept the arc points

to". In other words, each relation must state the maximal type of each of its

1

In a message sent to the CG mailing list on July 31, 1992.



arcs (i.e., arguments). To sum up, both [13, 7] consider a graph to be canonical

if and only if all relations are used according to their signatures.

This is obviously a very weak notion of canonicity because the set of canon-

ical graphs is too large. Star graphs are also too restrictive: by imposing the

form and the number of base graphs (one for each relation type), the user can

only specify very simple selectional constraints that take no contextual informa-

tion into account. However, star graphs have computational advantages. As the

recognition of a canonical graph is based on graph projection (see Section 5), if

the elements of the canonical basis have a single relational vertex the complexity

becomes polynomial.

The approach of Chein and Mugnier [2, 6] is better. They distinguish between

the canonical basis and the basis of the support . The latter is the set of star

graphs, and the graphs generated by the canonical formation rules from the star

graphs are called well-formed . As in the original theory, the authors consider the

canonical basis to be the generator set of the canonical graphs, but as expected

they require the graphs of the canonical basis to be well-formed. This means

that every canonical graph is well-formed. Therefore in this approach there is

a new meaningfulness level between arbitrary conceptual graphs and canonical

graphs. Notice that in the approaches mentioned above [13, 7] the canonical

basis corresponds to the basis of the support and hence there is no distinction

between well-formed and canonical graphs.

Chein and Mugnier's \mixed" approach is not as restrictive, but still there

are conditions imposed on the elements of the canonical basis. This limits the

knowledge engineer's exibility to specify an ontology. Moreover, if the type of

an argument of a relation depends on the type of another of its arguments, more

than one star graph is necessary for that relation type. Also, it seems to us

that the selectional constraints speci�ed by star graphs are just a special case

of the selectional constraints that base graphs are supposed to express. In fact,

it is easy to provide a tool that checks whether the relations occurring in the

canonical basis are used consistently.

To sum up, Sowa's original de�nition of a canonical basis as a set of con-

ceptual graphs is still the most satisfactory one, as it provides all the exibility

required by a knowledge engineer, who is free to adhere to the speci�cation disci-

pline imposed by star graphs if he wishes. The formal de�nition of canon remains

hence similar to Sowa's, but as expected it uses the new de�nition of conformity

relation, which must be obeyed by every base graph. This is not explicitly stated

in the original Assumption 3.4.5 since condition 1 of the original de�nition of

conformity relation already required every concept to be conformant. As we have

abandoned condition 1 in general, we must impose it for the base graphs.

Notice that the canonical basis may be redundant: it might be possible to

derive exactly the same canonical graphs just from a proper subset of the canon-

ical basis. A Conceptual Structures system can detect that case using Theorem 7

(Section 5) to verify for each base graph if it can be derived from the other ones.



4 The canonical formation rules

The rules proposed by Assumption 3.4.3 have several advantages: they are sim-

ple, they do not contain redundancies (i.e. they are independent from each other),

and they are specialization rules. This means that their application (called a

canonical derivation) establishes a relationship between the initial graphs and

the resulting one that can be analyzed both from the logical (implication) as

from the graph-theoretical viewpoint (projection).

The drawback of using just specialization rules is that not every true graph

is a canonical one, clearly an undesirable state of a�airs. Considering Example 2

again, if graph 3 is true and ACT � EVENT then EVENT !

�

�

�

�

AGNT! PERSON: #John

is also true but as it cannot be obtained by specialization from the other three

graphs, it is not a canonical graph. This is contrary to the idea that canonical

graphs are \meaningful graphs that represent real or possible situations in the

external world" (p. 91). In other words, the true graphs must be a subset of the

canonical graphs. Hence, given a set of true graphs, the graphs derived from them

using the inference rules must be canonical and as such should be obtained by

applying the canonical formation rules to the same set of graphs. Put di�erently,

the inference rules must be a particular case of the canonical formation rules.

This is the approach followed in the new version of the theory [9]. Sowa has

made the canonical formation rules more general, and the inference rules limit

the applicability of the formation rules. He made two kinds of changes. First,

some rules do not apply to a single vertex or to a complete graph any more but

to a subgraph. Second, rules have been divided into three groups: those that

generate a logically equivalent graph, those that specialize the graph to which

they are applied, and those that generalize it.

As the next example shows, the rules are no longer independent from each

other. It is possible to get the same result from the same graph(s) applying

di�erent rules (to di�erent subgraphs in some cases). Although [9] does not

state what a subgraph is, from the rules we interpret it in the graph-theoretical

way as a subset of vertices and edges. A subgraph therefore does not have to

be a conceptual graph. In particular it may be just a single relation node. This

allows the new rules to include the original simpli�cation rule.

Example 3. From the graph ACT !

�

�

�

�

AGNT! ANIMATE one can derive

ACT !

�

�

�

�

AGNT! ANIMATE

& %

�

�

�

�

AGNT

in two distinct ways. The �rst is to make a copy of the subgraph

�

�

�

�

AGNT , which

shows that the two graphs are equivalent. The second one starts with a copy of

the whole graph and then joins pairwise equal concepts.

The notion of canonicity does not exist in [9]. As such, the canonical for-

mation rules are not used autonomously but by the inference rules. There are

however good reasons to want to use the canonical formation rules directly:



{ in many applications (like natural language understanding [10]) it is useful

to process graphs whose truth value is unknown;

{ it is desirable to have an \operational" characterization of canonical graphs;

{ the canonical formation rules can be a starting point for the de�nition of

other operations.

Since the new canonical formation rules may specialize part of a graph and

generalize some other part, the notion of projection must be relaxed to allow the

\declarative" characterization of the canonical graphs thus obtained.

De�nition2. Let g and g

0

be two conceptual graphs. A semi-projection � : g !

g

0

is a function that maps g to a subgraph of g

0

such that

{ for any vertex v of g, either �(v) � v or �(v) � v

2

;

{ for any relation r of g, if its i-th arc a links r to concept c, then �(a) is the

i-th arc between �(r) and �(c).

If the function is a bijection then g

0

is called an semi-instance of g.

The new canonical formation rules can now be presented. They are similar

to Sowa's. The changes made arose from the need to generate only ontologically

meaningful graphs. Therefore some rules had to be restricted. Others had to be

added to make sure that the �rst-order rules of inference are indeed a particular

case of the canonical formation rules

3

.

Assumption3. Given a canon and zero or more conceptual graphs, the canon-

ical formation rules generate new graphs. Some rules are de�ned in terms of

subgraph duplication, removal and substitution. The de�nition of subgraph de-

pends on the rule to be applied. In any case the operations also duplicate, re-

move, or substitute the arcs between subgraph vertices and external vertices. If

the graphs to which the rules are applied obey the conformity relation then so

must the resulting graph. In the following c is a context, either empty or con-

taining the conceptual graphs g

1

and g

2

which might be the same one. Graphs

g

0

1

and g

0

2

are subgraphs of g

1

and g

2

, respectively.

{ Equivalence Rules. In these rules, if a subgraph contains a concept, it also

contains all relations linked to the concept.

Copy Make a copy of g

0

1

.

Simplify Remove g

0

1

if g

0

1

and g

0

2

are identical and are linked to the same

external vertices but have no vertices in common.

{ Specialization Rules. In these rules, if a subgraph contains a relation, it also

contains all concepts linked to the relation.

Join Overlay g

0

1

and g

0

2

if they are identical.

2

This is an extension of the partial order over types to concepts and relations.

3

That does not happen in [9] and neither in this paper since we restrict ourselves

to graphs without contexts or coreference links. The full version of the canonical

formation rules [12] is however a generalization of the inference rules [11].



Restrict Substitute a vertex v of g

1

by a specialization if v has not been

unrestricted before.

Insertion Insert a base graph in c.

{ Generalization Rules. In these rules, if a subgraph contains a relation, it also

contains all concepts linked to the relation.

Detach Substitute g

1

by g

0

1

if g

0

1

is a semi-instance of some base graph.

Unrestrict Substitute a vertex v of g

1

by a generalization if v has not been

restricted previously.

Remove Remove g

1

.

The detailed explanation of the rules is given in [12]. The next subsections

will just highlight the most important issues. First some general remarks. As in

Sowa's original rules, the conformity relation must be checked before restricting

or relaxing a concept. The formulation is also much more concise and simpler

than those in [9, 4]. It is also clearer as it gives precise de�nitions of subgraphs.

As Sowa's new rules, these are not independent from each other but they are so

within each of the three groups.

4.1 Copy and Simplify

To see the reason for the given de�nition of subgraph, consider a concept c

linked to a relation r such that c is part of the subgraph but r is not. Then the

copy or simpli�cation (i.e., removal) of c adds or removes the arc to r. In other

words, the arity of r increments or decrements by one, and the resulting graph

is not canonical. Therefore r must also be part of the subgraph as required by

Assumption 3. Now, if r is duplicated or removed, its links to some external

concept c

0

will be duplicated or removed, too, but that only changes the number

of arcs attached to c

0

, not the arity of r or its copy r

0

(see Example 3).

As for the simplify rule, two subgraphs g

0

1

and g

0

2

are duplicates only if they

are connected to the same external vertices. There are two cases. If there are no

such vertices then g

0

1

= g

1

and g

0

2

= g

2

, which means that we are considering two

copies of a complete graph. Hence one of them can be eliminated. In the second

case, if the external vertices are the same, the two subgraphs must be part of the

same graph: g

1

= g

2

. In both cases the two subgraphs may not overlap. As for

the �rst case that would amount to g

1

= g

2

and the simplify rule would become

the remove rule. The problem in the second case is similar.

Example 4. Consider the relation NTT (not taller than) between persons. The

subgraph

�

�

�

�

NTT ! PERSON: #John !

�

�

�

�

NTT occurs twice in

PERSON: #John !

�

�

�

�

NTT ! PERSON: #John

- .

�

�

�

�

NTT

Eliminating one of the copies one gets just PERSON: #John which is not equivalent

to the original.

Notice that the simplify rule stated in [9] does not impose any restriction on

the duplicate subgraphs. As such, it is not an equivalence rule.



4.2 Restrict and Unrestrict

The restrict and unrestrict rules now allow to generalize or specialize any vertex

(including relations), but they prevent the generalization and specialization of

the same vertex. If that would be possible, any type t could be substituted by any

other type t

0

, even an incompatible one. This has been noted independently by

[12, 5]. It means that the canonical formation rules could derive almost any non-

canonical graph from the canonical basis, thus making the selectional constraints

imposed by the base graphs useless.

Example 5. ACT !

�

�

�

�

AGNT! ANIMATE can be restricted to ACT !

�

�

�

�

AGNT! ?

and then unrestricted to ACT !

�

�

�

�

AGNT! IDEA . The intermediate step could

also be a generalization to ACT !

�

�

�

�

AGNT! > followed by a specialization to

the �nal graph.

In Sowa's approach, the canonical formation rules are only used by the infer-

ence rules. Since a graph cannot be simultaneously in an even context (where it

can be generalized) and in an odd one (where it could be specialized), the restrict

and unrestrict rules are never mixed. In our approach there were two possibili-

ties: generalizations and specializations are forbidden for the same graph or just

for the same vertex. The second option is more exible and has been adopted.

The interplay between specialization and generalization is subtle. Certain

vertices cannot be changed at all, namely those that were obtained by joining a

vertex that has been generalized with one that was specialized.

Example 6. Let PERSON < ANIMAL < ANIMATE and let NTT be the relation of Ex-

ample 4. From the conceptual graphs

ACT !

�

�

�

�

AGNT! ANIMATE PERSON !

�

�

�

�

NTT ! PERSON

it is possible to obtain ACT !

�

�

�

�

AGNT! ANIMAL!

�

�

�

�

NTT ! PERSON by re-

stricting ANIMATE and unrestricting PERSON followed by a join on both.

The ANIMAL concept can be no longer changed. Otherwise it would be pos-

sible to obtain e.g. ACT !

�

�

�

�

AGNT! DOG !

�

�

�

�

NTT ! PERSON through special-

ization and ACT !

�

�

�

�

AGNT! PHYSOBJ !

�

�

�

�

NTT ! PERSON through generaliza-

tion, which violate NTT's and AGNT's selectional constraints, respectively.

To correctly implement these rules it is necessary to keep the history of each

vertex. That can be done using two boolean variables, one indicating if the vertex

has been generalized, the other whether it was specialized. An operation can be

performed only if the variable corresponding to the other operation is set to

false. When two vertices are joined, the variables of the resulting vertex are the

conjunction of the corresponding variables of the original vertices.



4.3 Join and Detach

Both of Sowa's join rules [8, 9] only handle two (identical) concepts at a time.

The rule of Assumption 3 allows one to join identical subgraphs. Notice that the

rule allows them to belong to di�erent graphs. That case is called an external join

in [6]. As the join of two relations also involves the join of their arguments, the

de�nition of subgraph is exactly the opposite of the one used by the equivalence

rules.

One should also point out that the simpli�cation can be simulated by an

internal join, i.e. when the two subgraphs belong to the same graph. Indeed,

overlaying two subgraphs is equivalent to eliminating one of them while keeping

its arcs to the rest of the graph. As in the simplify rule both subgraphs have the

same external links, the overlapping e�ect is obtained. Let us see an example

using the graph of Example 4.

Example 7. Subgraph PERSON: #John !

�

�

�

�

NTT ! PERSON: #John occurs twice in

PERSON: #John !

�

�

�

�

NTT ! PERSON: #John

- .

�

�

�

�

NTT

Overlaying the two of them one gets PERSON: #John !

�

�

�

�

NTT ! PERSON: #John .

The same result can be obtained by applying the simplify rule to the

�

�

�

�

NTT

subgraph.

Sowa's detach rule allows one to erase any subgraph. It is obvious that the

remaining subgraph may not be canonical. Up to this part of the work, the only

graphs that are guaranteed to be canonical are the base graphs. Therefore our

rule must check that the remaining subgraph must be a base graph up to some

generalizations or specializations. By repeated application of the copy and the

detach rules it is possible to separate a graph into a cover of base components

(compare with Theorem 7).

5 Canonical Graphs

Now that we have a generator set (the canonical basis) and the generation rules

(the canonical formation rules) we can �nally de�ne the notion of canonical

graph, which will be equivalent to the one of Assumption 3.4.5. Only the formu-

lation di�ers. The original canonical formation rules (Assumption 3.4.3) use just

the conformity relation and therefore the initial set of graphs to which the rules

are applied must be explicitly stated. In our formulation that set (the canonical

basis) is already part of the de�nition of the formation rules. Thus a canonical

graph is a graph that can be generated from a canon and an \empty sheet".

De�nition4. A conceptual graph is called canonical regarding a given canon

C if it is possible to derive it from the empty set of graphs through application

of canonical formation rules using C.



In particular, applying the insertion rule one gets, as expected,

Proposition5. A base graph is canonical (regarding the canon it belongs to).

Although the de�nition of canonical graph is the same as the original one, due

to the di�erences in the de�nitions of the conformity relation and the canonical

formation rules, given the same canonical basis both frameworks generate quite

di�erent sets of canonical graphs. The sets are incomparable (i.e. neither is a

subset of the other) because Sowa's rules are not a subset of ours or vice-versa.

However, the presented rules guarantee as wished that every true or false graph

is canonical. Notice also that a graph can be considered canonical regarding a

canon, and non-canonical regarding another one.

Besides forming new canonical graphs it is also convenient to be able to

recognize them without explicitly constructing the derivation (the sequence of

rules) that leads to their formation. The original canonical formation rules just

specialize a graph. Hence the derivation process corresponds to a projection

(Theorem 3.5.4). In addition, Mugnier and Chein [6] have shown that if there

is a projection between two canonical graphs then there is a derivation. From

this and other results they obtained the following characterization: a conceptual

graph g is canonical if and only if there are projections of base graphs into g that

cover the whole of g. As the new canonical formation rules also allow vertices

to be generalized, projection is substituted by semi-projection (De�nition 2) but

the main idea remains.

De�nition6. A cover of a conceptual graph g is a �nite set of conceptual graphs

fg

1

; : : : ; g

n

g such that each g

i

is a subgraph of g and each vertex and arc of g

occurs in at least one graph of the cover.

Theorem7. A conceptual graph is canonical regarding canon C if and only if

it obeys the conformity relation and has a cover G such that each graph g 2 G

is an semi-instance of a base graph of C.

The importance of the theorem (proven in [12]) stems from the fact that it

provides an algorithm to check whether a conceptual graph g (e.g. given by an

user) is canonical or not. The method consists basically in �nding base graphs

whose semi-projections into g cover g completely. Since the semi-projection of a

relation also includes the concepts it is linked to, the algorithm can be simply as

follows. Choose a relation r of g and go through the canonical basis until �nding

a base graph whose semi-projection into g contains r. All relations covered by

that semi-projection are marked and the process is repeated with an unmarked

relation. This algorithm is identical to the one presented in [6] except that the

projection is substituted by the semi-projection. Hence the algorithm still is

polynomial in relationship to the complexity of the base operation (in this case

semi-projection). Most of the time base graphs are trees. Therefore, in those

cases semi-projection has polynomial complexity and recognizing a canonical

graph takes polynomial time in the size of the graph and of the canonical basis.



6 Conclusions

This paper has argued that canonicity is fundamental to Conceptual Structures

Theory since it corresponds to the intermediate ontological level between syntax

and logic. Therefore it has both conceptual as practical advantages. We have

analyzed some of the literature on canonicity and found out that the (implicit)

meaning of canonicity is either too weak (as in the case of relation signatures) or

its relationship to logic is vague or dubious. We have therefore explicitly adopted

a very precise guideline: a graph should be canonical if we would like to make a

de�nite statement about its truth or falsehood. Therefore canonical graphs are

a superset of true and false graphs: it is meaningless to speak about the truth

value of a non-canonical graph and, for a given knowledge base, the truth value

of some canonical graphs may be unknown.

Based on this new perspective of canonicity, which provides a simple yet clear

relationship between the ontological and logical levels, we have substantially

changed the de�nitions of the conformity relation and the canonical formation

rules and improved their formulation. To stress the relation between canonical

and true graphs, the �rst-order rules of inference have become a special case of

the canonical formation rules. Furthermore, the latter can now be used indepen-

dently of the former without the risk of generating non-canonical graphs.

In order to keep a \declarative" de�nition of canonical graphs projection

was generalized to semi-projection, but without computational impact since the

recognition of canonical graphs still has the same complexity as for the original

theory, in many cases being polynomial.
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