45 research outputs found

    A common framework for learning causality

    Full text link
    [EN] Causality is a fundamental part of reasoning to model the physics of an application domain, to understand the behaviour of an agent or to identify the relationship between two entities. Causality occurs when an action is taken and may also occur when two happenings come undeniably together. The study of causal inference aims at uncovering causal dependencies among observed data and to come up with automated methods to find such dependencies. While there exist a broad range of principles and approaches involved in causal inference, in this position paper we argue that it is possible to unify different causality views under a common framework of symbolic learning.This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. Diego Aineto is partially supported by the FPU16/03184 and Sergio Jimenez by the RYC15/18009, both programs funded by the Spanish government.Onaindia De La Rivaherrera, E.; Aineto, D.; Jiménez-Celorrio, S. (2018). A common framework for learning causality. Progress in Artificial Intelligence. 7(4):351-357. https://doi.org/10.1007/s13748-018-0151-yS35135774Aineto, D., Jiménez, S., Onaindia, E.: Learning STRIPS action models with classical planning. In: International Conference on Automated Planning and Scheduling, ICAPS-18 (2018)Amir, E., Chang, A.: Learning partially observable deterministic action models. J. Artif. Intell. Res. 33, 349–402 (2008)Asai, M., Fukunaga, A.: Classical planning in deep latent space: bridging the subsymbolic–symbolic boundary. In: National Conference on Artificial Intelligence, AAAI-18 (2018)Cresswell, S.N., McCluskey, T.L., West, M.M.: Acquiring planning domain models using LOCM. Knowl. Eng. Rev. 28(02), 195–213 (2013)Ebert-Uphoff, I.: Two applications of causal discovery in climate science. In: Workshop Case Studies of Causal Discovery with Model Search (2013)Ebert-Uphoff, I., Deng, Y.: Causal discovery from spatio-temporal data with applications to climate science. In: 13th International Conference on Machine Learning and Applications, ICMLA 2014, Detroit, MI, USA, 3–6 December 2014, pp. 606–613 (2014)Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153(1–2), 49–104 (2004)Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part I: Causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)Heckerman, D., Meek, C., Cooper, G.: A Bayesian approach to causal discovery. In: Jain, L.C., Holmes, D.E. (eds.) Innovations in Machine Learning. Theory and Applications, Studies in Fuzziness and Soft Computing, chapter 1, pp. 1–28. Springer, Berlin (2006)Li, J., Le, T.D., Liu, L., Liu, J., Jin, Z., Sun, B.-Y., Ma, S.: From observational studies to causal rule mining. ACM TIST 7(2), 14:1–14:27 (2016)Malinsky, D., Danks, D.: Causal discovery algorithms: a practical guide. Philos. Compass 13, e12470 (2018)McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, 27–31 July 1997, Providence, Rhode Island, pp. 460–465 (1997)McCarthy, J.: Epistemological problems of artificial intelligence. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, USA, 22–25 August 1977, pp. 1038–1044 (1977)McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. Mach. Intell. 4, 463–502 (1969)Pearl, J.: Reasoning with cause and effect. AI Mag. 23(1), 95–112 (2002)Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)Spirtes, C.G.P., Scheines, R.: Causation, Prediction and Search, 2nd edn. The MIT Press, Cambridge (2001)Spirtes, P., Zhang, K.: Causal discovery and inference: concepts and recent methodological advances. Appl. Inform. 3, 3 (2016)Thielscher, M.: Ramification and causality. Artif. Intell. 89(1–2), 317–364 (1997)Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205 (2015)Yang, Q., Kangheng, W., Jiang, Y.: Learning action models from plan examples using weighted MAX-SAT. Artif. Intell. 171(2–3), 107–143 (2007)Zhuo, H.H., Kambhampati, S: Action-model acquisition from noisy plan traces. In: International Joint Conference on Artificial Intelligence, IJCAI-13, pp. 2444–2450. AAAI Press (2013

    SPECULOOS exoplanet search and its prototype on TRAPPIST

    Full text link
    One of the most significant goals of modern science is establishing whether life exists around other suns. The most direct path towards its achievement is the detection and atmospheric characterization of terrestrial exoplanets with potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs), i.e. very-low-mass stars and brown dwarfs with effective temperatures lower than 2700 K, represent a unique opportunity to reach this goal within the next decade. The potential of the transit method for detecting potentially habitable Earth-sized planets around these objects is drastically increased compared to Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby UCD would be amenable for a thorough atmospheric characterization, including the search for possible biosignatures, with near-future facilities such as the James Webb Space Telescope. In this chapter, we first describe the physical properties of UCDs as well as the unique potential they offer for the detection of potentially habitable Earth-sized planets suitable for atmospheric characterization. Then, we present the SPECULOOS ground-based transit survey, that will search for Earth-sized planets transiting the nearest UCDs, as well as its prototype survey on the TRAPPIST telescopes. We conclude by discussing the prospects offered by the recent detection by this prototype survey of a system of seven temperate Earth-sized planets transiting a nearby UCD, TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H. Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure

    Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

    Get PDF
    One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away1. The transiting configuration of these planets, combined with the Jupiter-like size of their host star—named TRAPPIST-1—makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities1, 2, 3. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards4, 5. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces6, 7,8

    DIA1R Is an X-Linked Gene Related to Deleted In Autism-1

    Get PDF
    Background: Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62 % similar overall (28 % identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-lik

    Radiofrequency-induced thermo-chemotherapy effect versus a second course of Bacillus Calmette-Guérin or institutional standard in patients with recurrence of non-muscle-invasive bladder cancer following induction or maintenance Bacillus Calmette-Guérin therapy (HYMN): A phase III, open-label, randomised controlled trial

    Get PDF
    Background: There is no effective intravesical second-line therapy for non-muscle-invasive bladder cancer (NMIBC) when bacillus Calmette-Guérin (BCG) fails. Objective: To compare disease-free survival time (DFS) between radiofrequency-induced thermo-chemotherapy effect (RITE) and institutional standard second-line therapy (control) in NMIBC patients with recurrence following induction/maintenance BCG. Design, settings, and participants: Open-label, phase III randomised controlled trial accrued across 14 centres between May 2010 and July 2013 (HYMN [ClinicalTrials.gov: NCT01094964]). Intervention: Patients were randomly assigned (1:1) to RITE (60min, 40mg mitomycin-C, 42±2°C) or control following stratification for carcinoma in situ (CIS) status (present/absent), therapy history (failure of previous induction/maintenance BCG), and treatment centre. Outcome measurements and statistical analysis: Primary outcome measures were DFS and complete response (CR) at 3 mo for the CIS at randomisation subgroup. Analysis was based on intention-to-treat. Results and limitations: A total of 104 patients were randomised (48 RITE: 56 control). Median follow-up for the 31 patients without a DFS event was 36 mo. There was no significant difference in DFS between treatment arms (hazard ratio [HR] 1.33, 95% confidence interval [CI] 0.84-2.10, p=0.23) or in 3-mo CR rate in CIS patients (n=71; RITE: 30% vs control: 47%, p=0.15). There was no significant difference in DFS between treatment arms in non-CIS patients (n=33; RITE: 53% vs control: 24% at 24 mo, HR 0.50, 95% CI 0.22-1.17, p=0.11). DFS was significantly lower in RITE than in control in CIS with/without papillary patients (n=71; HR 2.06, 95% CI 1.17-3.62, p=0.01; treatment-subgroup interaction p=0.007). Disease progression was observed in four patients in each treatment arm. Adverse events and health-related quality of life between treatment arms were comparable. Conclusions: DFS was similar between RITE and control. RITE may be a second-line therapy for non-CIS recurrence following BCG failure; however, confirmatory trials are needed. RITE patients with CIS with/without papillary had lower DFS than control. HYMN highlights the importance of the control arm when evaluating novel therapies. Patient summary: This study did not show a difference in bladder cancer outcomes between microwave-heated chemotherapy and standard of care treatment. Papillary bladder lesions may benefit from microwave-heated chemotherapy treatment; however, more research is needed. Both treatments are similarly well tolerated
    corecore