106 research outputs found

    Managing lifestyle change to reduce coronary risk: a synthesis of qualitative research on peoples’ experiences

    Get PDF
    Background Coronary heart disease is an incurable condition. The only approach known to slow its progression is healthy lifestyle change and concordance with cardio-protective medicines. Few people fully succeed in these daily activities so potential health improvements are not fully realised. Little is known about peoples’ experiences of managing lifestyle change. The aim of this study was to synthesise qualitative research to explain how participants make lifestyle change after a cardiac event and explore this within the wider illness experience. Methods A qualitative synthesis was conducted drawing upon the principles of meta-ethnography. Qualitative studies were identified through a systematic search of 7 databases using explicit criteria. Key concepts were identified and translated across studies. Findings were discussed and diagrammed during a series of audiotaped meetings. Results The final synthesis is grounded in findings from 27 studies, with over 500 participants (56% male) across 8 countries. All participants experienced a change in their self-identity from what was ‘familiar’ to ‘unfamiliar’. The transition process involved ‘finding new limits and a life worth living’ , ‘finding support for self’ and ‘finding a new normal’. Analyses of these concepts led to the generation of a third order construct, namely an ongoing process of ‘reassessing past, present and future lives’ as participants considered their changed identity. Participants experienced a strong urge to get back to ‘normal’. Support from family and friends could enable or constrain life change and lifestyle changes. Lifestyle change was but one small part of a wider ‘life’ change that occurred. Conclusions The final synthesis presents an interpretation, not evident in the primary studies, of a person-centred model to explain how lifestyle change is situated within ‘wider’ life changes. The magnitude of individual responses to a changed health status varied. Participants experienced distress as their notion of self identity shifted and emotions that reflected the various stages of the grief process were evident in participants’ accounts. The process of self-managing lifestyle took place through experiential learning; the level of engagement with lifestyle change reflected an individual’s unique view of the balance needed to manage ‘realistic change’ whilst leading to a life that was perceived as ‘worth living’. Findings highlight the importance of providing person centred care that aligns with both psychological and physical dimensions of recovery which are inextricably linked

    Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart

    Get PDF
    Heart failure (HF) is characterized by molecular and cellular defects which jointly contribute to decreased cardiac pump function. During the development of the initial cardiac damage which leads to HF, adaptive responses activate physiological countermeasures to overcome depressed cardiac function and to maintain blood supply to vital organs in demand of nutrients. However, during the chronic course of most HF syndromes, these compensatory mechanisms are sustained beyond months and contribute to progressive maladaptive remodeling of the heart which is associated with a worse outcome. Of pathophysiological significance are mechanisms which directly control cardiac contractile function including ion- and receptor-mediated intracellular signaling pathways. Importantly, signaling cascades of stress adaptation such as intracellular calcium (Ca2+) and 3′-5′-cyclic adenosine monophosphate (cAMP) become dysregulated in HF directly contributing to adverse cardiac remodeling and depression of systolic and diastolic function. Here, we provide an update about Ca2+ and cAMP dependent signaling changes in HF, how these changes affect cardiac function, and novel therapeutic strategies which directly address the signaling defects

    FKBP12 Activates the Cardiac Ryanodine Receptor Ca2+-Release Channel and Is Antagonised by FKBP12.6

    Get PDF
    Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca2+-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca2+-induced Ca2+-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca2+, whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 µM) increased Ca2+-wave frequency and decreased the SR Ca2+-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12

    Bisphenol A and 17β-Estradiol Promote Arrhythmia in the Female Heart via Alteration of Calcium Handling

    Get PDF
    There is wide-spread human exposure to bisphenol A (BPA), a ubiquitous estrogenic endocrine disruptor that has been implicated as having potentially harmful effects on human heart health. Higher urine BPA concentrations have been shown to be associated with cardiovascular diseases in humans. However, neither the nature nor the mechanism(s) of BPA action on the heart are understood. leak suppressed estrogen-induced triggered activities. The rapid response of female myocytes to estrogens was abolished in an estrogen receptor (ER) β knockout mouse model. leak. Our study provides the first experimental evidence suggesting that exposure to estrogenic endocrine disrupting chemicals and the unique sensitivity of female hearts to estrogens may play a role in arrhythmogenesis in the female heart

    Using visual methods to understand physical activity maintenance following cardiac rehabilitation

    Get PDF
    © 2015 Hardcastle et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Few studies have explored the factors associated with long-term maintenance of exercise following cardiac rehabilitation. The present study used auto-photography and interviews to explore the factors that influence motivation and continued participation in physical activity among post cardiac rehabilitation patients. Twenty-three semi-structured interviews were conducted alongside participant-selected photographs or drawings with participants that had continued participation in physical activity for at least two years following the cardiac rehabilitation programme. Participants were recruited from circuit training classes in East Sussex in the UK. Thematic content analysis revealed seven main themes: fear of death and ill health avoidance, critical incidents, overcoming aging, social influences, being able to enjoy life, provision of routine and structure, enjoyment and psychological well-being. Fear of death, illness avoidance, overcoming aging, and being able to enjoy life were powerful motives for continued participation in exercise. The social nature of the exercise class was also identified as a key facilitator of continued participation. Group-based exercise suited those that continued exercise participation post cardiac rehabilitation and fostered adherence

    Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: A coupled electromechanical modeling study

    Get PDF
    Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here, we employ a deterministic mathematical model describing various Ca2+ signalling pathways under voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin (CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In particular, we study the frequency dependence of the peak force generated by the myofilaments, the force-frequency response (FFR). Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban (PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+ channel (ICa;L); and the enhancement in SERCA pump activity via phosphorylation of PLB.Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp studies both in the presence/absence of cAMP mediated -adrenergic stimulation. This study provides quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating the frequency-dependence of the trigger current (ICa;L) and RyR-release. It also highlights the relative role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here, we present a coupled electromechanical study emphasizing the rate-dependence of isometric force developed and also investigate the temperature-dependence of FFR. Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR, generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa;L as the key mechanisms underlying the aforementioned positive FFR

    Comparative genomics of the major parasitic worms

    Get PDF
    Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms
    corecore