2,364 research outputs found

    Electrically controlled long-distance spin transport through an antiferromagnetic insulator

    Full text link
    Spintronics uses spins, the intrinsic angular momentum of electrons, as an alternative for the electron charge. Its long-term goal is in the development of beyond-Moore low dissipation technology devices. Recent progress demonstrated the long-distance transport of spin signals across ferromagnetic insulators. Antiferromagnetically ordered materials are however the most common class of magnetic materials with several crucial advantages over ferromagnetic systems. In contrast to the latter, antiferromagnets exhibit no net magnetic moment, which renders them stable and impervious to external fields. In addition, they can be operated at THz frequencies. While fundamentally their properties bode well for spin transport, previous indirect observations indicate that spin transmission through antiferromagnets is limited to short distances of a few nanometers. Here we demonstrate the long-distance, over tens of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3), the most common antiferromagnetic iron oxide, exploiting the spin Hall effect for spin injection. We control the spin current flow by the interfacial spin-bias and by tuning the antiferromagnetic resonance frequency with an external magnetic field. This simple antiferromagnetic insulator is shown to convey spin information parallel to the compensated moment (N\'eel order) over distances exceeding tens of micrometers. This newly-discovered mechanism transports spin as efficiently as the net magnetic moments in the best-suited complex ferromagnets. Our results pave the way to ultra-fast, low-power antiferromagnet-insulator-based spin-logic devices that operate at room temperature and in the absence of magnetic fields

    Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes

    Get PDF
    Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN) leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the different stages of diabetic renal disease. Methods and Findings: We studied urine microRNA profiles with qPCR in 40 T1D with >20 year follow up 10 who never developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease. Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk stratification of DN in T1D by inferring the alteration of renal molecular processes. © 2013 Argyropoulos et al

    The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation

    Get PDF
    The bacteria Pseudomonas syringae is a pathogen of many crop species and one of the model pathogens for studying plant and bacterial arms race coevolution. In the current model, plants perceive bacteria pathogens via plasma membrane receptors, and recognition leads to the activation of general defenses. In turn, bacteria inject proteins called effectors into the plant cell to prevent the activation of immune responses. AvrPto and AvrPtoB are two such proteins that inhibit multiple plant kinases. The tomato plant has reacted to these effectors by the evolution of a cytoplasmic resistance complex. This complex is compromised of two proteins, Prf and Pto kinase, and is capable of recognizing the effector proteins. How the Pto kinase is able to avoid inhibition by the effector proteins is currently unknown. Our data shows how the tomato plant utilizes dimerization of resistance proteins to gain advantage over the faster evolving bacterial pathogen. Here we illustrate that oligomerisation of Prf brings into proximity two Pto kinases allowing them to avoid inhibition by the effectors by transphosphorylation and to activate immune responses

    Association between amebic liver abscess and Human Immunodeficiency Virus infection in Taiwanese subjects

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Invasive amebiasis is an emerging parasitic disorder in Taiwan, especially in patients diagnosed with human immunodeficiency virus (HIV) infection. Thirty-three Taiwanese subjects with amebic liver abscess (ALA) were examined and a possible correlation between ALA and HIV infection was investigated.</p> <p>Results</p> <p>Among ALA patients, the proportion of HIV-positive individuals increased during the study period. ALA was the first major clinical presentation in 54% of HIV patients with ALA. Overall, 58% (14/24) of HIV-infected patients had a CD4+ count > 200 cells/μL and 82.1% (23/28) had no concurrent opportunistic infection or other evidence of HIV infection. There was no marked difference in clinical characteristics between HIV-positive and HIV-negative ALA patients except the level of leukocytosis.</p> <p>Conclusion</p> <p>While the clinical characteristics described herein cannot be used to determine whether ALA patients have HIV infection, routine HIV testing is recommended in patients with ALA, even in the absence of HIV symptoms.</p

    Construction and Application of an Electronic Spatiotemporal Expression Profile and Gene Ontology Analysis Platform Based on the EST Database of the Silkworm, Bombyx mori

    Get PDF
    An Expressed Sequence Tag (EST) is a short sub-sequence of a transcribed cDNA sequence. ESTs represent gene expression and give good clues for gene expression analysis. Based on EST data obtained from NCBI, an EST analysis package was developed (apEST). This tool was programmed for electronic expression, protein annotation and Gene Ontology (GO) category analysis in Bombyx mori (L.) (Lepidoptera: Bombycidae). A total of 245,761 ESTs (as of 01 July 2009) were searched and downloaded in FASTA format, from which information for tissue type, development stage, sex and strain were extracted, classified and summed by running apEST. Then, corresponding distribution profiles were formed after redundant parts had been removed. Gene expression profiles for one tissue of different developmental stages and from one development stage of the different tissues were attained. A housekeeping gene and tissue-and-stage-specific genes were selected by running apEST, contrasting with two other online analysis approaches, microarray-based gene expression profile on SilkDB (BmMDB) and EST profile on NCBI. A spatio-temporal expression profile of catalase run by apEST was then presented as a three-dimensional graph for the intuitive visualization of patterns. A total of 37 query genes confirmed from microarray data and RT—PCR experiments were selected as queries to test apEST. The results had great conformity among three approaches. Nevertheless, there were minor differences between apEST and BmMDB because of the unique items investigated. Therefore, complementary analysis was proposed. Application of apEST also led to the acquisition of corresponding protein annotations for EST datasets and eventually for their functions. The results were presented according to statistical information on protein annotation and Gene Ontology (GO) category. These all verified the reliability of apEST and the operability of this platform. The apEST can also be applied in other species by modifying some parameters and serves as a model for gene expression study for Lepidoptera

    The impact of socio-economic disadvantage on rates of hospital separations for diabetes-related foot disease in Victoria, Australia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information describing variation in health outcomes for individuals with diabetes related foot disease, across socioeconomic strata is lacking. The aim of this study was to investigate variation in rates of hospital separations for diabetes related foot disease and the relationship with levels of social advantage and disadvantage.</p> <p>Methods</p> <p>Using the Index of Relative Socioeconomic Disadvantage (IRSD) each local government area (LGA) across Victoria was ranked from most to least disadvantaged. Those LGAs ranked at the lowest end of the scale and therefore at greater disadvantage (Group D) were compared with those at the highest end of the scale (Group A), in terms of total and per capita hospital separations for peripheral neuropathy, peripheral vascular disease, foot ulceration, cellulitis and osteomyelitis and amputation. Hospital separations data were compiled from the Victorian Admitted Episodes Database.</p> <p>Results</p> <p>Total and per capita separations were 2,268 (75.3/1,000 with diabetes) and 2,734 (62.3/1,000 with diabetes) for Group D and Group A respectively. Most notable variation was for foot ulceration (Group D, 18.1/1,000 <it>versus </it>Group A, 12.7/1,000, rate ratio 1.4, 95% CI 1.3, 1.6) and below knee amputation (Group D 7.4/1,000 <it>versus </it>Group A 4.1/1,000, rate ratio 1.8, 95% CI 1.5, 2.2). Males recorded a greater overall number of hospital separations across both socioeconomic strata with 66.2% of all separations for Group D and 81.0% of all separations for Group A recorded by males. However, when comparing mean age, males from Group D tended to be younger compared with males from Group A (mean age; 53.0 years <it>versus </it>68.7 years).</p> <p>Conclusion</p> <p>Variation appears to exist for hospital separations for diabetes related foot disease across socioeconomic strata. Specific strategies should be incorporated into health policy and planning to combat disparities between health outcomes and social status.</p

    Consumer perceptions of co-branding alliances: Organizational dissimilarity signals and brand fit

    Get PDF
    This study explores how consumers evaluate co-branding alliances between dissimilar partner firms. Customers are well aware that different firms are behind a co-branded product and observe the partner firms’ characteristics. Drawing on signaling theory, we assert that consumers use organizational characteristics as signals in their assessment of brand fit and for their purchasing decisions. Some organizational signals are beyond the control of the co-branding partners or at least they cannot alter them on short notice. We use a quasi-experimental design and test how co-branding partner dissimilarity affects brand fit perception. The results show that co-branding partner dissimilarity in terms of firm size, industry scope, and country-of-origin image negatively affects brand fit perception. Firm age dissimilarity does not exert significant influence. Because brand fit generally fosters a benevolent consumer attitude towards a co-branding alliance, the findings suggest that high partner dissimilarity may reduce overall co-branding alliance performance

    Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode

    Get PDF
    Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a condensed matter system. Here we demonstrate a new type of Zener tunnelling that involves the resonant transmission of electrons through zero-dimensional (0D) states. In our devices, a narrow quantum well of the mid-infrared (MIR) alloy In(AsN) is placed in the intrinsic (i) layer of a p-i-n diode. The incorporation of nitrogen in the quantum well creates 0D states that are localized on nanometer lengthscales. These levels provide intermediate states that act as “stepping stones” for electrons tunnelling across the diode and give rise to a negative differential resistance (NDR) that is weakly dependent on temperature. These electron transport properties have potential for the development of nanometre-scale non-linear components for electronics and MIR photonics
    corecore