139 research outputs found

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    Notch signaling during human T cell development

    Get PDF
    Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse

    Gu-4 Suppresses Affinity and Avidity Modulation of CD11b and Improves the Outcome of Mice with Endotoxemia and Sepsis

    Get PDF
    BACKGROUND: Systemic leukocyte activation and disseminated leukocyte adhesion will impair the microcirculation and cause severe decrements in tissue perfusion and organ function in the process of severe sepsis. Gu-4, a lactosyl derivative, could selectively target CD11b to exert therapeutic effect in a rat model of severe burn shock. Here, we addressed whether Gu-4 could render protective effects on septic animals. METHODOLOGY/PRINCIPAL FINDINGS: On a murine model of endotoxemia induced by lipopolysaccharide (LPS), we found that the median effective dose (ED50) of Gu-4 was 0.929 mg/kg. In vivo treatment of Gu-4 after LPS challenge prominently attenuated LPS-induced lung injury and decreased lactic acid level in lung tissue. Using the ED50 of Gu-4, we also demonstrated that Gu-4 treatment significantly improved the survival rate of animals underwent sepsis induced by cecal ligation and puncture. By adhesion and transwell migration assays, we found that Gu-4 treatment inhibited the adhesion and transendothelial migration of LPS-stimulated THP-1 cells. By flow cytometry and microscopy, we demonstrated that Gu-4 treatment inhibited the exposure of active I-domain and the cluster formation of CD11b on the LPS-stimulated polymorphonuclear leukocytes. Western blot analyses further revealed that Gu-4 treatment markedly inhibited the activation of spleen tyrosine kinase in LPS-stimulated THP-1 cells. CONCLUSIONS/SIGNIFICANCE: Gu-4 improves the survival of mice underwent endotoxemia and sepsis, our in vitro investigations indicate that the possible underlying mechanism might involve the modulations of the affinity and avidity of CD11b on the leukocyte. Our findings shed light on the potential use of Gu-4, an interacting compound to CD11b, in the treatment of sepsis and septic shock

    Aneuploidy in pluripotent stem cells and implications for cancerous transformation

    Get PDF
    Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation

    Meningitic Escherichia coli K1 Penetration and Neutrophil Transmigration Across the Blood–Brain Barrier are Modulated by Alpha7 Nicotinic Receptor

    Get PDF
    Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7-/-) mouse brain microvascular endothelial cells (BMEC) and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the blood-brain barrier (BBB) were significantly reduced in α7-/- BMEC and α7-/- mice. Stimulation by nicotine was abolished in the α7-/- cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7-/- cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7-/- mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids of the α7-/- mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation

    Global proteome changes in the rat diaphragm induced by endurance exercise training

    Get PDF
    Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfor- tunately, prolonged MV results in the rapid development of diaphragmatic atrophy and weakness. Importantly, endurance exercise training results in a diaphragmatic phenotype that is protected against ventilator-induced diaphragmatic atrophy and weakness. The mechanisms responsible for this exercise-induced protection against ventilator-induced dia- phragmatic atrophy remain unknown. Therefore, to investigate exercise-induced changes in diaphragm muscle proteins, we compared the diaphragmatic proteome from sedentary and exercise-trained rats. Specifically, using label-free liquid chromatography-mass spectrome- try, we performed a proteomics analysis of both soluble proteins and mitochondrial proteins isolated from diaphragm muscle. The total number of diaphragm proteins profiled in the sol- uble protein fraction and mitochondrial protein fraction were 813 and 732, respectively. Endurance exercise training significantly (P<0.05, FDR <10%) altered the abundance of 70 proteins in the soluble diaphragm proteome and 25 proteins of the mitochondrial proteome. In particular, key cytoprotective proteins that increased in relative abundance following exer- cise training included mitochondrial fission process 1 (Mtfp1; MTP18), 3-mercaptopyruvate sulfurtransferase (3MPST), microsomal glutathione S-transferase 3 (Mgst3; GST-III), and heat shock protein 70 kDa protein 1A/1B (HSP70). While these proteins are known to be cytoprotective in several cell types, the cyto-protective roles of these proteins have yet to be fully elucidated in diaphragm muscle fibers. Based upon these important findings, future experiments can now determine which of these diaphragmatic proteins are sufficient and/or required to promote exercise-induced protection against inactivity-induced muscle atrophy

    Health promotion through self-care and community participation: Elements of a proposed programme in the developing countries

    Get PDF
    BACKGROUND: The concepts of health promotion, self-care and community participation emerged during 1970s, primarily out of concerns about the limitation of professional health system. Since then there have been rapid growth in these areas in the developed world, and there is evidence of effectiveness of such interventions. These areas are still in infancy in the developing countries. There is a window of opportunity for promoting self care and community participation for health promotion. DISCUSSION: A broad outline is proposed for designing a health promotion programme in developing countries, following key strategies of the Ottawa Charter for health promotion and principles of self care and community participation. Supportive policies may be framed. Self care clearinghouses may be set up at provincial level to co-ordinate the programme activities in consultation with district and national teams. Self care may be promoted in the schools and workplaces. For developing personal skills of individuals, self care information, generated through a participatory process, may be disseminated using a wide range of print and audio-visual tools and information technology based tools. One such potential tool may be a personally held self care manual and health record, to be designed jointly by the community and professionals. Its first part may contain basic self care information and the second part may contain outlines of different personally-held health records to be used to record important health and disease related events of an individual. Periodic monitoring and evaluation of the programme may be done. Studies from different parts of the world indicate the effectiveness and cost-effectiveness of self care interventions. The proposed outline has potential for health promotion and cost reduction of health services in the developing countries, and may be adapted in different situations. SUMMARY: Self care, community participation and health promotion are emerging but dominant areas in the developed countries. Elements of a programme for health promotion in the developing countries following key principles of self care and community participation are proposed. Demonstration programmes may be initiated to assess the feasibility and effectiveness of this programme before large scale implementation

    Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland

    Get PDF
    Symbiosis with microbes is crucial for survival and development of wood-inhabiting longhorn beetles (Coleoptera: Cerambycidae). Thus, knowledge of the endemic fungal associates of insects would facilitate risk assessment in cases where a new invasive pest occupies the same ecological niche. However, the diversity of fungi associated with insects remains poorly understood. The aim of this study was to investigate fungi associated with the native large poplar longhorn beetle (Saperda carcharias) and the recently introduced Asian longhorn beetle (Anoplophora glabripennis) infesting hardwood trees in Finland. We studied the cultivable fungal associates obtained from Populus tremula colonised by S. carcharias, and Betula pendula and Salix caprea infested by A. glabripennis, and compared these to the samples collected from intact wood material. This study detected a number of plant pathogenic and saprotrophic fungi, and species with known potential for enzymatic degradation of wood components. Phylogenetic analyses of the most commonly encountered fungi isolated from the longhorn beetles revealed an association with fungi residing in the Cadophora-Mollisia species complex. A commonly encountered fungus was Cadophora spadicis, a recently described fungus associated with wood-decay. In addition, a novel species of Cadophora, for which the name Cadophora margaritata sp. nov. is provided, was isolated from the colonised wood.Peer reviewe

    Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea

    Get PDF
    A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study
    corecore