20 research outputs found

    An ALMA survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS field: halo masses for submillimetre galaxies

    Get PDF
    We present an analysis of the spatial clustering of a large sample of high-resolution, interferometically identified, submillimetre galaxies (SMGs). We measure the projected cross-correlation function of ∌350 SMGs in the UKIDSS Ultra Deep-Survey Field across a redshift range of z = 1.5–3 utilizing a method that incorporates the uncertainties in the redshift measurements for both the SMGs and cross-correlated galaxies through sampling their full probability distribution functions. By measuring the absolute linear bias of the SMGs, we derive halo masses of log10(Mhalo[h−1M⊙]) ∌ 12.8 with no evidence of evolution in the halo masses with redshift, contrary to some previous work. From considering models of halo mass growth rates, we predict that the SMGs will reside in haloes of mass log10(Mhalo[h−1M⊙]) ∌ 13.2 at z = 0, consistent with the expectation that the majority of z = 1.5–3 SMGs will evolve into present-day spheroidal galaxies. Finally, comparing to models of stellar-to-halo mass ratios, we show that SMGs may correspond to systems that are maximally efficient at converting their gas reservoirs into stars. We compare them to a simple model for gas cooling in haloes that suggests that the unique properties of the SMG population, including their high levels of star formation and their redshift distribution, are a result of the SMGs being the most massive galaxies that are still able to accrete cool gas from their surrounding intragalactic medium

    An ALMA/NOEMA survey of the molecular gas properties of high-redshift star-forming galaxies

    Get PDF
    We have used ALMA and NOEMA to study the molecular gas reservoirs in 61 ALMA-identified submillimetre galaxies (SMGs) in the COSMOS, UDS, and ECDFS fields. We detect 12CO (⁠Jup= 2–5) emission lines in 50 sources, and [C I](3P1 − 3P0) emission in eight, at z= 1.2–4.8 and with a median redshift of 2.9 ± 0.2. By supplementing our data with literature sources, we construct a statistical CO spectral line energy distribution and find that the 12CO line luminosities in SMGs peak at Jup ∌ 6, consistent with similar studies. We also test the correlations of the CO, [C I], and dust as tracers of the gas mass, finding the three to correlate well, although the CO and dust mass as estimated from the 3-mm continuum are preferable. We estimate that SMGs lie mostly on or just above the star-forming main sequence, with a median gas depletion timescale, tdep = Mgas/SFR, of 210 ± 40 Myr for our sample. Additionally, tdep declines with redshift across z ∌ 1–5, while the molecular gas fraction, ÎŒgas = Mgas/M*, increases across the same redshift range. Finally, we demonstrate that the distribution of total baryonic mass and dynamical line width, Mbaryon–σ, for our SMGs is consistent with that followed by early-type galaxies in the Coma cluster, providing strong support to the suggestion that SMGs are progenitors of massive local spheroidal galaxies. On the basis of this, we suggest that the SMG populations above and below an 870-ÎŒm flux limit of S870 ∌ 5 mJy may correspond to the division between slow and fast rotators seen in local early-type galaxies

    Host species adaptation of TLR5 signalling and flagellin recognition

    Get PDF
    Toll-like receptor 5 (TLR5) recognition of flagellin instigates inflammatory signalling. Significant sequence variation in TLR5 exists between animal species but its impact on activity is less well understood. Building on our previous research that bovine TLR5 (bTLR5) is functional, we compared human and bovine TLR5 activity and signalling in cognate cell lines. bTLR5 induced higher levels of CXCL8 when expressed in bovine cells and reciprocal results were found for human TLR5 (hTLR5) in human cells, indicative of host cell specificity in this response. Analysis of Toll/interleukin-1 receptor (TIR) sequences indicated that these differential responses involve cognate MyD88 recognition. siRNA knockdowns and inhibitor experiments demonstrated that there are some host differences in signalling. Although, PI3K activation is required for bTLR5 signalling, mutating bTLR5 F798 to hTLR5 Y798 within a putative PI3K motif resulted in a significantly reduced response. All ruminants have F798 in contrast to most other species, suggesting that TLR5 signalling has evolved differently in ruminants. Evolutionary divergence between bovine and human TLR5 was also apparent in relation to responses measured to diverse bacterial flagellins. Our results underscore the importance of species specific studies and how differences may alter efficacy of TLR-based vaccine adjuvants

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers

    AEGIS20: A radio survey of the Extended Groth Strip

    Get PDF
    We describe AEGIS20-a radio survey of the Extended Groth Strip (EGS) conducted with the Very Large Array (VLA) at 1.4 GHz. The resulting catalog contains 1123 emitters and is sensitive to ultraluminous (10^12 L⊙) starbursts to z ≀ 1.3, well matched to the redshift range of the DEEP2 spectroscopic survey in this region. We use stacking techniques to explore the microjansky-level emission from a variety of galaxy populations selected via conventional criteria-Lyman break galaxies (LBGs), distant red galaxies (DRGs), UV-selected galaxies, and extremely red objects (EROs)-determining their properties as a function of color, magnitude, and redshift and their extinction-free contributions to the history of star formation. We confirm the familiar pattern that the star formation rate (SFR) density, ρ_*, increases by at least a factor of ~5 from z = 0 to 1, although we note highly discrepant UV- and radio-based SFR estimates. Our radio-based SFRs become more difficult to interpret at z > 1 where correcting for contamination by radio-loud active galactic nuclei (AGNs) comes at the price of rejecting luminous starbursts. While stacking radio images is a useful technique, accurate radio-based SFRs for z » 1 galaxies require precise redshifts and extraordinarily high fidelity radio data to identify and remove accretion-related emission

    Rapid growth of black holes in massive star-forming galaxies

    Get PDF
    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe and can account for >30% of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes [>10^(8) M(Sun)], there must have been an earlier pre-quasar phase when these black holes grew [mass range ~10^(6)-10^(8) M(Sun)]. The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (i.e., z>1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.Comment: 5 pages, 2 figures, to appear in Nature on 7th Apri

    An ALMA survey of the SCUBA-2 CLS UDS field: Physical properties of 707 Sub-millimetre Galaxies

    Get PDF
    We analyse the physical properties of a large, homogeneously selected sample of ALMA-located sub-millimetre galaxies (SMGs). This survey, AS2UDS, identified 707 SMGs across the ∌ 1 deg2 field, including ∌ 17 per cent which are undetected at K ≳ 25.7 mag. We interpret their UV-to-radio data using MAGPHYS and determine a median redshift of z = 2.61±0.08 (1-σ range of z = 1.8–3.4) with just ∌ 6 per cent at z > 4. Our survey provides a sample of massive dusty galaxies at z ≳ 1, with median dust and stellar masses of Md = (6.8±0.3) × 108 M⊙ (thus, gas masses of ∌ 1011 M⊙) and M* = (1.26±0.05) × 1011 M⊙. We find no evolution in dust temperature at a constant far-infrared luminosity across z ∌ 1.5–4. The gas mass function of our sample increases to z ∌ 2–3 and then declines at z > 3. The space density and masses of SMGs suggest that almost all galaxies with M* ≳ 3 × 1011 M⊙ have passed through an SMG-like phase. The redshift distribution is well fit by a model combining evolution of the gas fraction in halos with the growth of halo mass past a critical threshold of Mh ∌ 6 × 1012 M⊙, thus SMGs may represent the highly efficient collapse of gas-rich massive halos. We show that SMGs are broadly consistent with simple homologous systems in the far-infrared, consistent with a centrally illuminated starburst. Our study provides strong support for an evolutionary link between the active, gas-rich SMG population at z > 1 and the formation of massive, bulge-dominated galaxies across the history of the Universe
    corecore