373 research outputs found

    Whole Genome PCR Scanning Reveals the Syntenic Genome Structure of Toxigenic Vibrio cholerae Strains in the O1/O139 Population

    Get PDF
    Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes

    A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells

    Get PDF
    Purpose Glioblastoma Multiforme (GBM) is the commonest brain tumour in adults. A population of cells, known as cancer stem cells (CSCs), is thought to mediate chemo/radiotherapy resistance. CD133 is a cell surface marker to identify and isolate CSCs. However, its functional significance and the relevant microenvironment in which to study CD133 remain unknown. We examined the influence of hypoxia on CD133 expression and the potential functional significance of CD133 in glioblastoma chemoresistance. Methods Gene expression was analysed by qRT-PCR. siRNA technique was used to downregulate genes and confirmed by flow cytometry. IC50 values was evaluated with the Alamar blue assay. Results CD133 expression was upregulated in hypoxia in 2D and 3D models. There was increased resistance to chemotherapeutics, cisplatin, temozolomide and etoposide, in cells cultured in hypoxia compared to normoxia. siRNA knockdown of either HIF1a or HIF2a resulted in reduced CD133 mRNA expression with HIF2a having a more prolonged effect on CD133 expression. HIF2a downregulation sensitized GBM cells to cisplatin to a greater extent than HIF1a but CD133 knockdown had a much more marked effect on cisplatin sensitisation than knockdown of either of the HIFs suggesting a HIF-independent mechanism of cisplatin resistance mediated via CD133. The same mechanism was not involved in temozolomide resistance since downregulation of HIF1a but not HIF2a or CD133 sensitized GBM cells to temozolomide. Conclusion Knowledge of the mechanisms involved in the novel hypoxia-induced CD133-mediated resistance to cisplatin observed might lead to identification of new strategies that enable more effective use of current therapeutic agents

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation.</p> <p>Methods</p> <p>Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [<sup>3</sup>H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of <it>n</it>-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay.</p> <p>Results</p> <p>In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC.</p> <p>Conclusion</p> <p>These findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.</p

    The Bulge/Disk Connection in Late-type Spirals

    Get PDF
    Recent ground-based photometric investigations suggest that central regions of late-type spirals are closely coupled to the inner disk and probably formed via secular evolution. Evidence presented in support of this model includes the predominance of exponential bulges, the correlation of bulge and disk scale lengths, blueness of the bulge and small differences between bulge and central disk colors, detection of spiral structure into the core, and rapid rotation. Recent HST observations show that our own bulge and that of M31, M32, and M33 probably harbor both an old and intermediate-age populations in agreement with models of early collapse of the spheroid plus gas transfer from the disk. Secular evolution provides a mechanism to build-up central regions in late-type spirals; mergers or accretion of small satellites could explain the brighter, kinematically distinct bulges of Sa's and SO's

    Characterising droughts in Central America with uncertain hydro-meteorological data

    Get PDF
    Central America is frequently affected by droughts that cause significant socio-economic and environmental problems. Drought characterisation, monitoring and forecasting are potentially useful to support water resource management. Drought indices are designed for these purposes, but their ability to characterise droughts depends on the characteristics of the regional climate and the quality of the available data. Local comprehensive and high-quality observational networks of meteorological and hydrological data are not available, which limits the choice of drought indices and makes it important to assess available datasets. This study evaluated which combinations of drought index and meteorological dataset were most suitable for characterising droughts in the region. We evaluated the standardised precipitation index (SPI), a modified version of the deciles index (DI), the standardised precipitation evapotranspiration index (SPEI) and the effective drought index (EDI). These were calculated using precipitation data from the Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), the CRN073 dataset, the Climate Research Unit (CRU), ECMWF Reanalysis (ERA-Interim) and a regional station dataset, and temperature from the CRU and ERA-Interim datasets. The gridded meteorological precipitation datasets were compared to assess how well they captured key features of the regional climate. The performance of all the drought indices calculated with all the meteorological datasets was then evaluated against a drought index calculated using river discharge data. Results showed that the selection of database was more important than the selection of drought index and that the best combinations were the EDI and DI calculated with CHIRPS and CRN073. Results also highlighted the importance of including indices like SPEI for drought assessment in Central America.Universidad de Costa Rica/[805-B0-810]/UCR/Costa RicaUniversidad de Costa Rica/[805-A9-532]/UCR/Costa RicaUniversidad de Costa Rica/[805-B3-600]/UCR/Costa RicaUniversidad de Costa Rica/[805-B0-065]/UCR/Costa RicaUniversidad de Costa Rica/[805-B3-413]/UCR/Costa RicaUniversidad de Costa Rica/[805-B4-227]/UCR/Costa RicaUniversidad de Costa Rica/[805-B4-228]/UCR/Costa RicaUniversidad de Costa Rica/[805-B5-295]/UCR/Costa RicaUppsala University/[54100006]//SueciaMarie Curie Intra-European Fellowship/[No.329762]//EuropaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic

    The Insulin-Like Growth Factor System in the Long-Lived Naked Mole-Rat.

    Get PDF
    Naked mole-rats (Heterocephalus glaber) (NMRs) are the longest living rodents known. They show negligible senescence, and are resistant to cancers and certain damaging effects associated with aging. The insulin-like growth factors (IGFs) have pluripotent actions, influencing growth processes in virtually every system of the body. They are established contributors to the aging process, confirmed by the demonstration that decreased IGF signaling results in life-extending effects in a variety of species. The IGFs are likewise involved in progression of cancers by mediating survival signals in malignant cells. This report presents a full characterization of the IGF system in the NMR: ligands, receptors, IGF binding proteins (IGFBPs), and IGFBP proteases. A particular emphasis was placed on the IGFBP protease, pregnancy-associated plasma protein-A (PAPP-A), shown to be an important lifespan modulator in mice. Comparisons of IGF-related genes in the NMR with human and murine sequences indicated no major differences in essential parts of the IGF system, including PAPP-A. The protease was shown to possess an intact active site despite the report of a contradictory genome sequence. Furthermore, PAPP-A was expressed and translated in NMRs cells and retained IGF-dependent proteolytic activity towards IGFBP-4 and IGF-independent activity towards IGFBP-5. However, experimental data suggest differential regulatory mechanisms for PAPP-A expression in NMRs than those described in humans and mice. This overall description of the IGF system in the NMR represents an initial step towards elucidating the complex molecular mechanisms underlying longevity, and how these animals have evolved to ensure a delayed and healthy aging process

    Induction of Neuronal Death by Microglial AGE-Albumin: Implications for Alzheimer’s Disease

    Get PDF
    Advanced glycation end products (AGEs) have long been considered as potent molecules promoting neuronal cell death and contributing to neurodegenerative disorders such as Alzheimer’s disease (AD). In this study, we demonstrate that AGE-albumin, the most abundant AGE product in human AD brains, is synthesized in activated microglial cells and secreted into the extracellular space. The rate of AGE-albumin synthesis in human microglial cells is markedly increased by amyloid-β exposure and oxidative stress. Exogenous AGE-albumin upregulates the receptor protein for AGE (RAGE) and augments calcium influx, leading to apoptosis of human primary neurons. In animal experiments, soluble RAGE (sRAGE), pyridoxamine or ALT-711 prevented Aβ-induced neuronal death in rat brains. Collectively, these results provide evidence for a new mechanism by which microglial cells promote death of neuronal cells through synthesis and secretion of AGE-albumin, thereby likely contributing to neurodegenerative diseases such as AD

    A latent growth curve model to estimate electronic screen use patterns amongst adolescents aged 10 to 17 years

    Get PDF
    Background: High quality, longitudinal data describing young people's screen use across a number of distinct forms of screen activity is missing from the literature. This study tracked multiple screen use activities (passive screen use, gaming, social networking, web searching) amongst 10- to 17-year-old adolescents across 24 months. Methods: This study tracked the screen use of 1948 Australian students in Grade 5 (n = 636), Grade 7 (n = 672), and Grade 9 (n = 640) for 24 months. At approximately six-month intervals, students reported their total screen time as well as time spent on social networking, passive screen use, gaming, and web use. Patterns of screen use were determined using latent growth curve modelling. Results: In the Grades 7 and 9 cohorts, girls generally reported more screen use than boys (by approximately one hour a day), though all cohorts of boys reported more gaming. The different forms of screen use were remarkably stable, though specific cohorts showed change for certain forms of screen activity. Conclusion: These results highlight the diverse nature of adolescent screen use and emphasise the need to consider both grade and sex in future research and policy
    corecore