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Abstract: In a real-world scenario for privacy-preserving data publishing, the original data is anonymized and released 

periodically. Each release may vary in number of records due to insert, update, and delete operations. An intruder can 

combine i.e. correlate different releases to compromise the privacy of the individual records. Most of the literature, 

such as 𝜏-safety, 𝜏-safe (l, k)-diversity, have an inconsistency in record signatures and adds counterfeit tuples with 

high generalization that causes privacy breach and information loss. In this paper, we propose an improved privacy 

model (𝜏, 𝑚)-slicedBucket, having a novel idea of “Cache” table to address these limitations. We indicate that a 

collusion attack can be performed for breaching the privacy of 𝜏-safe (l, k)-diversity privacy model, and demonstrate 

it through formal modeling. The objective of the proposed (𝜏, 𝑚)-slicedBucket privacy model is to set a tradeoff 

between strong privacy and enhanced utility. Furthermore, we formally model and analyze the proposed model to 

show that the collusion attack is no longer applicable. Extensive experiments reveal that the proposed approach 

outperforms the existing models. 
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1. Introduction 

With the advent of recent technologies such as Internet of Things (IoT) and Big Data technologies, huge amount of 

data is collected on daily basis [1-2]. The accumulated data can be of various type such as credit card transactions, 

phone calls, web browsing, social media activities, or Electronic Health Records (EHR), etc. [1-3]. Such data may 

contain private information e.g. name, address, account number, patient disease information in EHR, etc. The leakage 

of private information is a major concern in today’s modern society. Recently, it has been reported that 41 million 

healthcare record breached in 2019 [4]. Moreover, another report indicates that U.S. healthcare department loss $6.2 

billion annually due to the private information leakage in EHR [5]. On the other hand, data publishing and sharing is 

also very crucial for research innovation and improving business processes. In this regard, Privacy-Preserving Data 

Publishing (PPDP) methods aims to keep the privacy of an individual before publishing the data using anonymization 

techniques [6-8]. 

The PPDP methods can be either static or dynamic. In case of Privacy-Preserving Static Data Publishing (PPSDP), 

the data is published one time. The most common PPSDP techniques include k-anonymity [6-7], l-diversity [8], t-

closeness [9]. Contrary, Privacy-Preserving Dynamic Data Publishing (PPDDP) is based on republication in which 

data can be modified over time through insertion, update or deletion. The first contribution introduced in PPDDP is 

known as m-invariance [10], where the signature (a set of sensitive information in a group of records), of each record 

must remain the same in every republication. The authors in [11] and [12] improved m-invariance with 𝜏-safety and 

𝜏-safe (𝑙, 𝑘)-diversity privacy models, respectively. In all the three models dummy records (noise tuples) have been 

used as counterfeit tuples to create a consistent signature for a record. However, it has been identified that 𝜏-safe (𝑙, 
𝑘)-diversity [12] prevents signature inconsistency during internal updates up to two releases and cannot prevent during 

further alternate releases. Moreover, all the mentioned techniques suffer from counterfeit usage limitations.  



The focus of this paper is to address the above-mentioned limitation in existing PPDDP techniques by proposing a 

new privacy model named as (𝜏, 𝑚)-slicedBucket, in comparison to 𝜏-safe (𝑙, 𝑘)-diversity model. The proposed model 

identifies that the 𝜏-safe (𝑙, 𝑘)-diversity model contains inconsistent record signatures in an alternate releases. The 

inconsistent record signatures prone the patient’s data to a new type of attack, that is termed as collusion attack which 

breaches the privacy of the intended target individual. The proposed algorithm creates a consistent record signature 

for each record over time to prevent the collusion attack. The proposed approach presents a novel idea of cache table 

(i.e. Cach), which are few repeated records extracted from an original microdata T to avoid use of counterfeit records. 

The proposed Algorithm 1 (see Section 5.4) begins working after Cach table creation. To the best of our knowledge 

the idea of Cach table is a novel work in PPDDP. The (𝜏, 𝑚)-slicedBucket also separate the delete table (Del) work 

in 𝜏-safe (𝑙, 𝑘)-diversity model into Del and an update (Upd) tables for better record identification. During the 

anonymization process, we apply slicing [13] and cell generalization [14-15] approaches for an improved utility and 

privacy. The proposed (𝜏, 𝑚)-slicedBucket privacy model groups the tuples into sliced buckets. Each slice bucket 

must fulfill the following privacy requirements; (i) be of size k and m-invariant, (ii) be in sliced form, (iii) fulfill the 

m-invariance requirement and (iv) maintain a consistent signature for an individual record in each release during 

internal or external updates (discussed in Section 1.1 Motivation). 

 

1.1 Motivation 

The microdata data T contains EHRs of different individuals. The attributes of T  are classified into; identifier attribute  

- AID (e.g. social security number or an individual name), quasi identifier attributes - AQI (e.g. age, gender, zipcode), 

and sensitive attribute - AS  (e.g. disease.) For data de-identification, removing the AID  is not enough because an 

adversary (i.e. an attacker) can use background knowledge (BK) i.e. certain pattern of AQI (partial identifiers) and AS 

[16], and can link the published data to some external data (e.g. voting system) to re-identify an individual, named as 

linking attack. Therefore, the original microdata T is k-anonymized [1] to 𝑇∗ (e.g. Table 2a) for preventing the linking 

attack. Before anonymizing the actual data using the proposed (𝜏, 𝑚)-slicedBucket privacy model, the repeated 𝐴𝑠 

records in microdata T (Table 1a) are extracted to produce Cach table (Table 1b). The remaining records (Table 1c) 

are considered as original microdata T for anonymization. Therefore, to identify the privacy breach in [12] the same 

data i.e. in Table 1c, is used to perform anonymization through 𝜏-safe (l,k)-diversity [12] and the proposed (𝜏, 𝑚)-

slicedBucked privacy models. 

 
TABLE 1a Microdata Table T (before Cach) 

Age Gender Zipcode Disease 

22 M 47906 Aids 

22 F 47305 Flu 

33 F 47905 SSM-pos 

52 F 47905 Asthma 

54 M 47906 Flu 

60 M 47302 Cardiac 

60 M 47304 Dyspepsia 

64 F 47304 Gastritis 

21 M 47901 Bronchitis 

54 F 47902 Dyspepsia 

27 M 47303 Aids 

65 M 47308 Cardiac 

58 F 47905 Asthma 

64 F 47308 Gastritis 

21 M 47907 Bronchitis 
 

TABLE 1b Cach table 

Age Gender Zipcode Disease 

22 M 47906 Aids 

22 F 47305 Flu 

33 F 47905 SSM-pos 

52 F 47905 Asthma 

60 M 47302 Cardiac 

60 M 47304 Dyspepsia 

64 F 47304 Gastritis 

21 M 47901 Bronchitis 

52 F 47907 Malaria 

32 M 47955 Diarrhea 

52 M 47915 Pneumonia 
 

 

TABLE 1c Microdata T (after Cach) 

Age Gender Zipcode Disease 

21 M 47907 Bronchitis 

27 M 47303 Aids 

33 F 47905 SSM-pos 

58 F 47905 Asthma 

54 M 47906 Flu 

54 F 47902 Dyspepsia 

64 F 47308 Gastritis 

65 M 47308 Cardiac 

 

The PPDDP can support records insertion, deletion or update operations during different releases (i.e. 𝑇1
∗, 𝑇2

∗, 𝑇3
∗, … 𝑇𝑛

∗). 

Modification in data is known as external and internal updates. First time insertion or deletion that effects the total 

number of records; are known as external updates. Internal updates are the re-insertion of deleted records or change 

in the record attribute values i.e. AQI or AS values, over different times. In this paper we consider the internal updates 

for AS values and are arbitrary i.e. old values have not been correlated with the new ones. An intruder can identify an 

individual record by correlating different releases i.e. intersection or subtraction, published over time. Like [16], we 

consider that some of the AS values are persistent (values that never change) while others are transient (may freely 

change with time) but are arbitrary. Figure 1 shows the relationship between persistent and transient values with the 

possible operations on them. For example, if insertion is performed initially, the value must be persistent, but it can 

be transient which will be known in Tj (2 ≤ j ≤ n) . An update operation shows that the value must be transient, and 

so on. 



 
FIGURE 1 Relating values with the possible operations on them 

 

Consider a portion from original microdata 𝑇 (after Cach reduction) in Table 1c having AS values that are common 

between male and female.  

 
TABLE 2a 𝜏-safe (2,2)-diversity GT1 for T1

∗ 

GID (name) Age Zip code BID 

1(p1)  [21-27](21) [47303-47907](47907) 1 

1(p2)  [21-27](27) [47303-47907](47303) 1 

2(p3)  [33-58](33) [47905-47906](47905) 2 

2(p4) [33-58](58) [47905-47906](47905) 2 
 

TABLE 3a 𝜏-safe (2,2)-diversity GT2 for T3
∗ 

GID (name) Age Zip code BID 

1(p1) [21-22](21) [47906-47907](47906) 1 

1(C1)  [21-22](22) [47906-47907](47907) 1 

2(p3) [33-58](33) [47905-47921](47905) 2 

2(p5) [33-58](58) [47905-47921](47921) 2 
 

 
 

TABLE 2b 𝜏 -safe (2,2)-diversity 

BT1 for T1
∗ 

BID Signature Count 

1 Bron, Aids  1 

2 SSM-pos, Asthma 1 

 

TABLE 2c Del table at time 1 

p2 Bron, Aids 

p4 SSM-pos, Asthma 

p3 SSM-pos, Asthma 

 
 

TABLE 3b 𝜏 -safe (2,2)-diversity 

BT2 for T3
∗ 

BID Signature Count 

1 Bron, Aids 1 

2 SSM-pos, Dysp 1 

 
 

TABLE 3c Del table at time 3 

p2 Bron, Aids 

p4 SSM-pos, Asthma 

p3  SSM-pos, Asthma 

p3  SSM-pos, Dysp  

 

This work has been motivated by the following limitations in 𝜏-safe (𝑙, 𝑘)-diversity privacy model [12]. 

(i) Fails to prevent Collusion Attack. The 𝜏-safe (𝑙, 𝑘)-diversity [12] prevents signature inconsistency during internal 

updates only for two releases and cannot prevent during further alternate releases i.e. Tn
∗ ≠ Tn−2

∗ , Tn−1
∗ ≠ Tn−3

∗  and so 

on. For example, after releasing T1
∗ the deleted records = {p2, p4}, updated = {p3}. T2

∗ creates consistent signatures 

with T1
∗ but the problem arises in T3

∗. Consider an internally update scenario for any of the record e.g. p3=SSM-pos in 

Table 2a. At time 2 in T2
∗, for example p3 has suffered from Diarrhea, so a new signature {Glaucoma, Diarrhea} has 

been created. At time 3, if p3 suffers again with same disease value SSM-pos, its intersection with {Glaucoma, 

Diarrhea} is zero, i.e. S(t) ∉ Sig(BTp−1(t)) in 𝜏-safe (𝑙, 𝑘)-diversity algorithm, and T3
∗ ∩ T2

∗ = 0. The reason behind 

is; the algorithm checks the signature inconsistency with its previous release only i.e. p-1, and no further checking is 

performed. The 𝜏-safe (l, k)-diversity algorithm allows to create a new signature for p3 that may causes signature 

inconsistency with the same p3 record at time 1. The signatures stored in Del Table 3c are useless at all because the 

algorithm only stores record signatures in Del table. While creating new signatures, there is no verification of the same 

signature existence in Del table. It also causes the increase in the size of Del table drastically. For example, at time 3, 

the newly created signature for p3 is (SSM-pos, Dyspepsia), where p5 = Dyspepsia is a newly inserted sensitive value 

at time 3. The new signature for p3 has an intersection value SSM-pos with his own signature at time 1. The intersection 

value obtained is a collusion of the three releases. Such internal updates enable the intruder in identifying the p3 latest 

sensitive value using the AQI values in previously published releases. Therefore, the collusion attack can occur. 

(ii) Improper use of Del table. Two limitations were observed in Del table usage of 𝜏-safe (𝑙, 𝑘)-diversity [12], (i) 

both the deleted and updated record-signatures are stored at one place, (ii) no-deletion of re-inserted record signature. 

These limitations cause two problems: (i) Mixing of updated and deleted tuples; that eventually leads to a scenario 

where the legitimate records are unpublishable. For a specific record, each time the alternate internal updates create 

new signatures that will lead to signature limitations, ii) Continuously increasing size of Del  table. Therefore, 

searching for an internally updated record signature among the deleted records, will take longer time. The proposed 

(𝜏, m)-slicedBucket privacy model separates the Del work into Del and Upd tables. 

(iii) Bound to use Counterfeit tuples. The use of counterfeit; a noise or dummy record, is common in m-invariance 

[10], 𝜏-safety [11] and 𝜏-safe (𝑙, 𝑘)-diversity [12]. These models directly use the counterfeit tuples when there is no 

other record to create the required signature. Using counterfeits, increases the privacy but reduces the truthfulness in 

records and utility because of the noise addition. In a special case, there may be insertion of such records that will 

only need the counterfeits for signature consistency, so a drastic utility decrease with complete fake publishing may 

occur. The proposed privacy model in this work, does not use any counterfeit tuple with the help of novel idea of Cach 

table.  



 

1.2 Contributions  

The main contributions of the proposed (𝜏, 𝑚)-slicedBucket privacy model are as follows. 

1. We propose an improvement of 𝜏 -safe (𝑙, 𝑘) -diversity, named as (𝜏, 𝑚) -slicedBucket privacy model for 

sequential dynamic data publishing. The proposed approach prevents against a new type of attack, named 

collusion attack. Unlike the 𝜏-safe (𝑙, 𝑘)-diversity, the (𝜏, 𝑚)-slicedBucket uses Del, Upd and Cach tables during 

the anonymization process to help in creating consistent record signatures.  

2. We formally model and investigate the invalidation of 𝜏 -safe (𝑙, 𝑘) -diversity for the collusion attack and 

correctness of the proposed (𝜏, 𝑚)-slicedBucket privacy model. 

3. Based on the above points, the simulation results prove that the proposed privacy model outperform its counterpart 

in terms of privacy and utility. 

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 discusses the preliminaries. 

Section 4 shows the considered attacks and limitations in 𝜏-safe (l, k)-diversity [12] with respect to HLPN. Section 5 

present the proposed (𝜏, 𝑚) -slicedBucket privacy model and its formal analysis using HLPN. In Section 6, 

experiments and evaluations have been discussed. Section 7 concludes the paper. 

2. Related Work 

This section investigates and categorize the available relevant research work in order to define narrow scope of the 

proposed work. 

For implementing privacy and security in IoT and Big Data, numerous techniques exist in literature [17-26]. For PPDP, 

a bunch of anonymization algorithms have also been proposed so far. These PPDP approaches can be broadly 

categorized to semantic and syntactic privacy models. The 𝜖-differential privacy (random noise addition) [19] is an 

example of semantic data privacy. While syntactic privacy is a clustering framework which creates quasi identifier 

(QI) groups called equivalence classes (ECs).  The k-anonymity [6-7] by Sweeney et. al., and all its refinements e.g. 

𝑙-diversity [8], t-closeness [9], 𝛽-likeness [20], 𝜃-Sensitive k-anonymity [21], are the syntactic approaches which 

prevent the linking attack. In all these privacy approaches the microdata is generalized into k-anonymized groups 

where every record is un-differentiable from at least k-1 other records. The syntactic privacy algorithms can be further 

categorization into microaggregation [22-26], anatomization [27-28] and generalization [29-35]. Microaggregation 

replaces the QI values in an EC to the centroid of the EC. Anatomization performs vertical partition by separating the 

microdata T into QI attributes table and sensitive attribute (SA) table. Generalization includes top-down [34] or 

bottom-up [35] approaches where more specific QI values are replaced with less specific values. As compared to 

generalization, anatomy [27] may have high degree of privacy disclosure because of publishing actual values. The 

centroid values in microaggregation are not the real record QI values. Hence the published data is meaningless. Due 

to the advantages of generalization; as compared to microaggregation and anatomization, we have used bottom-up 

cell generalization in the proposed algorithm. 

A more practical and challenging scenario is the PPDDP which can be categorized to (i) Multiple and, (ii) Sequential 

data publishing. In multiple data publishing, at the same time and on the same data, different set of attributes are 

published [14], [36]. In sequential data publishing, many releases of the same table are published over a period of time 

[10-12], [15-16], [37-39]. The focus of this paper is sequential data publishing, where data are published over time 

having the same schema. In each release the number of records may vary. The variation during different releases is 

due to adding records (insertion), removing few existing records (deletion), or modifying the existing records or re-

insertion of old records (updating). Most privacy models fail to preserve privacy due to adversary BK. Several works 

consider BK for single publishing [40-42], however an adversary cannot adopt the static BK for re-publishing scenario. 

For privacy breach in re-publishing the adversary correlate attributes or records in different sequential releases.  

Byun et. al. [43] was first to propose the idea of data re-publishing where only insertion is considered (incremental 

update). The m-invariance [10] being the first to address dynamic publications; all the operations i.e. insertion, 

updating and deletion, is considered in a sequential scenario. A top-down global generalizing algorithm; k-likability 

[38] confirmed that a record could not be linked with less than k distinct AS  values in a sequential release. The 

applicability of the algorithm was only for two releases. Shmuely et al. [37] proposed a sequential privacy model in a 

multipartite graph with more releases. In the above model, only few records could be inserted over time. 𝜏-safety [11] 

is a state-of-the-art privacy model for sequential data publication based on m-invariance [10] concept. 𝜏-safe (l, k)-

diversity [12] further claimed to improve the 𝜏-safety model however, the algorithm failed to reflect the claim and 

applicability is limited to only two releases. Also, in m-invariance [10], 𝜏-safety [11] and 𝜏-safe (l, k)-diversity [12], 

adding counterfeit tuples is compulsory which fails to claim the truthfulness of published data. The proposed privacy 



model (𝜏, 𝑚)-slicedBucket is a syntactic sequential data anonymization privacy model without the counterfeit tuples, 

using cell generalization approach. 

3. Preliminaries  

Let the microdata T = {T1, T2, T3, … Tr} be the EHRs tables generated at times 1,2,3,…r, respectively, where each table 

Tj before anonymization is in the form: Tj = {AID, AQI, AS}. The total number of tuples in any Tj are td (1 ≤ i ≤ d) 

tuples where each tuple belong to an individual i, and is known as the record respondent. Let Tj
∗ be the anonymized 

release, that have been published at time j (1 ≤ j ≤ r). The Tj
∗ consists of QI attributes column (ACQI) and As column 

(ACS), where AID (i.e. work as a patient identifier - PID) is dropped before publication. Del, Upd and Cach are the 

supporting tables, which store the deleted records with their signatures, internally updated records with their signatures 

and the repeated AS values tuples from original microdata, respectively. The intruder identifies an individual after 

linking the AQIs with some external dataset e.g. the publicly available voting data. The  AS, which contains sensitive 

information e.g. disease in our case, needs to be protected the most. Table 4 depicts the notations used in this paper. 

 
TABLE 4 Notation used in the paper 

Symbol Description Symbol Description 

Tj Table of m tuples of v individuals Sign Sensitive Attributes Signatures 

Ts Number of tuples having same attribute values in each release Del Table of deleted records. 

Tn  Newly inserted records GID Group Identifier 

Tr The re-inserted tuples from Del table BKsv Sensitive value background knowledge 

Tr−1
 The original microdata table released at time r − 1 UBKsv Sensitive value updated BKsv 

Tr The current original micro data table to be released at time r PKsv Sensitive value posterior knowledge 

Tu The tuples whose sensitive value updates between the releases CΒK Composite Background knowledge 

AID Explicit identifiers in T Tj
∗ Anonymized data at time j 

ACQI Quasi identifier column in T BΤ Bucket Table 

ACS Sensitive attributes column in T GT Generalized Table  

 

Tuples ti in table Tj are classified into Ts, Tn, Tr, Tu and Td as follows.  

Ts = Tr ∩ Tr−1 

Tn = (Tr − Tr−1) + Tu, t ∉ Del, t ∉ Cach  

Tr: ∀t ∈ Tr, t ∉ Tr−1,t ∈ Del, t ∉ Upd  

Tu: ∀t ∈ Tr, t ∉ Tr−1,t ∈ Upd, t ∉ Del 

Td: ∀t ∉ Tr, t ∈ Tr−1,t ∈ Del  
where Tr and Tr−1 are the original microdata tables at time r and r-1, t is a record of an individual. 

 

3.1. Adversarial Background Knowledge 

The background knowledge (BK); logical or probabilistic, is the information an adversary collects from different 

sources and personal observations that may cause a privacy breach in static [7-9], [21-22] or in re-publication of data 

[11], [16], [32], [44]. In the proposed privacy model, it is assumed that an adversary recursively updates the BK. 

Adversarial BK comprises of already published releases, history of each individual tuple, QI values and an updated 

knowledge obtained from joining different releases. 

Sensitive value background knowledge (BKsv) is the adversary’s initial belief about a record respondent and about 

the corresponding possible sensitive value. It can be referred as prior belief about the sensitive values. Sensitive value 

updated background knowledge (UBKsv) is the revised observation over the released tuples BKsv during different 

releases. After a specific release, sensitive value posterior knowledge (PKi
sv) is the adversary confidence about a 

possible sensitive value for a record respondent. After release at time 1, only BKi
sv derives PKi

sv, because during first 

release, UBKsv is not available. In static data publishing, PKi
sv is compared with prior BKi

sv for privacy disclosure. In 

dynamic re-publication, continuous background knowledge (BKcon) is the correlation between two sensitive values 

at time 1 and 2. As, we are considering only arbitrary updates, this BKcon may not help the adversary. However PKi
sv 

is joined with BKcon , which is further joined with BKi
svto derive UBKi+1

sv  after release, at time 2. The UBKi+1
sv  is then 

joined with BKi
sv  to derive PKi+1

sv  for release at time 2. This recursive joining process increases the adversarial 

knowledge continuously, which helps in breaching the privacy of an individual. Equation (1) and (2) depict PKi
sv and 

UBKi+1
sv  calculation for some anonymized releases at time i. 

 

PKi
sv = BKi

sv   ⋈ UBKi+1
sv     (1) 



UBKi+1
sv = PKi

sv ⋈ BKcon ⋈ BKi
sv   (2) 

 

In this work, we consider collusion attack and membership attack based on intruder’s BK. The 𝑚-invariance [10], 𝜏-

safety [11] and 𝜏-safe (l, k)-diversity [12], instead of their claims are lacking with the inconsistencies of individual 

record signatures that causes the collusion attacks possible. For example in m-invariance [10] definition condition 2 

“for any tuple 𝑡 with lifespan [x, y] have the same signature”, 𝜏-safety [11] definition condition 2, “signature of [x] 

must remain the same” and 𝜏-safe (l, k)-diversity [12] condition 2, “all signatures of the record t must be consistence 

and have no intersection in the lifetime” are the same but have different explanations. What they claim in their 

definitions, are not achieved in their algorithms. The adversary continuously uses PKsv and UBKsv in Equation 1 and 

2 respectively for privacy breaches that leads to collusion attacks and membership disclosure attacks. 

 

3.2 Adversarial Model 

We assume the following adversarial model: 

 The generalized table GT = {GID, AQI, BID}. 

 The bucket table BT = {BID, Sign, Count}. 

 A published dataset PD = {GT, BT} that is publicly available.  

 The adversarial composite background knowledge is of the form: CΒK = (UBKsv, PKi
sv, PD) 

 

Definition 1: Collusion Attack. The adversary performs collusion attack, if Sig(Tr
∗(tj)) ∩ Sig(Tr−i

∗ (tj)) ≠ ∅, where 

2 < i < n, which can be a tuple from Tu or from Tr that can eventually identify the individual. 

Definition 2: Membership Attack. The adversary performs membership attack if he can map the known QI attribute of 

an individual i to an EC, to identify the AS value with the help of available PKsv and UBKsv. 

Definition 3: External Update [11-12]. 󠄀∀t, the operation is said to be external update of t, if t ∈ Tn or t ∈ Td.  

Definition 4: Internal Updates [11-12].  ∀t, the operation is said to be internal update of t, if t ∈ Tu or t ∈ Tr.  

Definition 5: slicedBucket (SBUC). Partitioning correlated attributes into columns and, tuples into buckets makes 

SBUCs. The values inside the SBUC can be randomly permuted to break the correlation between AQI and AS. 

Definition 6: Signature [11-12]. Let SBUC be a sliced set of distinct sensitive values in an EC. Signature of a tuple i.e. 

Sig(t) is known by the distinct sensitive values in SBUCi from which tuple t belongs.  

Definition 7: m-unique [10]. A SBUCi(1 ≤ i ≤ n) is m-unique if it contains at least m tuples and all the tuples have 

distinctive AS values. An anonymized table Tr
∗ is m-unique if all the SBUCs are m-unique.  

Definition 8: m-invariance [10]. Let T1
∗, T2

∗, T3
∗, … Tr

∗ be the sequential anonymized published relations, are said to be 

m-invariant if: 

1. ∀ Ti
∗ where (1 ≤ i ≤ r) is m-unique. 

2. For any tuple t ∈ T with lifespan [j, j + k](1 ≤ j ≤ r), k ≥ 0, we have Sig(tj) = Sig(tj+1) = ⋯ = Sig(tj+k), 

where tj denotes tuple t at publication time j and Sig(tj) shows signature of tuple t at publication time j. 

Definition 9: Privacy Risk [12]. risk(t) = p(t|(PKi
sv ∧ UBKi+1

sv )  where p(t) is the probability of tuple t and 

PKi
sv and UBKi+1

sv  are obtained from Eq. 1 and Eq. 2. 

Definition 10. High Level Petri-Nets (HLPN) [45-46]. A HLPN represents the system in a graphical and mathematical 

way to examine the control of information. It consists of 7-tuple,  𝑁 = (𝑃, 𝑇, 𝐹, 𝜑, 𝑅𝑛, 𝐿, 𝑀0). 𝑃 represents set of all 

places where place is a single portion in the system represented by circle, 𝑇 is the set of transitions such that 𝑃 ∩ 𝑇 =
∅, 𝑃 ∪ 𝑇 ≠ ∅. 𝐹 shows the flow such that 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 ∪ 𝑃), 𝜑 maps 𝑃 to the data types. 𝑅𝑛 defines the rules 

for transitions, 𝐿 is a label on 𝐹 and 𝑀0 represents the initial marking [37]. In short, 𝐿, 𝜑 and 𝑅𝑛 shows the static 

semantic whereas 𝐹, 𝑃 and 𝑇 represents the dynamic structure. 

 

4. Formal modeling and analysis of 𝝉-safe (𝒍, 𝒌)-diversity privacy model with adversarial attack identification  

In this section, we formally model and analyze the 𝜏-safe (l, k)-diversity [12] algorithm to identify the adversarial 

attack, i.e. collusion attack. To perform the formal modelling and analysis, HLPN has been used to represent the 𝜏-

safe (l, k)-diversity model in terms of its mathematical properties. Descriptions of places and variable types are shown 

in Table 5a. Mapping of data types on places are in Table 5b used in HLPN Figure 2.  

Figure 2 comprises of three entities, namely: end user, trusted data sanitizer and adversary. The transitions have been 

referred as Input. The first Input transition receives data from end user that serves for some health organization, EHRs; 

patients’ records - raw data. After this stage, the data is transferred to a trusted data-sanitizer. The data sanitizer  

 



 

TABLE 5a Description of places and types used in HLPN for 𝝉-safe (l, k)-diversity 
model 

Types Description 

𝐓𝐩−𝟏 Place holding sets of same records, signatures, and re-inserted records. 

𝐆𝐈𝐃 An integer type describing group identifier 

PID Patient Identifier  

𝐁𝐈𝐃 An integer type describing bucket identifier. 

𝐁𝐓𝐩−𝟏 Place holding bucket table and signatures  

𝐁 Place holding records signatures during classification phase 

𝐁′ Place holding SAs new signatures during classification phase 

𝐁𝐔𝐂, 𝐁𝐔𝐂′ Holds records signatures before and after updating all signatures 

𝐓𝐧, 𝐓𝐧′ Holding sets of new records and new records with added counterfeits 

𝐓𝐂𝐭𝐒, 𝐓𝐂𝐭𝐐 Place holding counterfeit records SV only and QI values only. 

𝐁𝐀-𝐁𝐔𝐂 Holding combined records signature after balancing and assignment 

𝐚𝐬𝐠-𝐯𝐚𝐫 Place holding assignment variables: 𝛼 is the number of buckets in 

Tn, 𝛽 is the number of distinct sensitive values in bucket and  𝛾 is total 

number of distinct sensitive values in Tn. 

𝐀-𝐁𝐔𝐂 Place holding updated bucket after assignment 

𝐓𝐩 Place holding QI values with BID from BA-BUC at release p 

𝐓-𝐐 Holds BID, quasi identifiers and generalization variables 

𝐓𝐬𝐨𝐫𝐭 Holds sorted QIs records in the data set 

𝐓𝐬𝐨𝐫𝐭′ Holds the same Tsort data for generalization after condition 

𝐚𝐫𝐫𝐚𝐲 Holds top k individuals QIs in the data set after condition 

𝐆𝐞𝐧𝐀𝐫𝐫𝐃𝐚𝐭𝐚 Holds array data after generalization 

𝐆𝐞𝐧𝐓𝐃𝐚𝐭𝐚 Holds T data after generalization 

𝐆𝐞𝐧𝐃𝐚𝐭𝐚 Holds final generalized QI data, obtained 

𝐒𝐢𝐠𝐧 𝐃𝐢𝐬 Holds adversarial disclosed signatures 

 

TABLE 5b Mapping of data types on places 

Places Description 

𝜑 (𝐓𝐩−𝟏) ℙ (Ts×Signsame×Tre  ) 

𝜑 (𝐁𝐓𝐩−𝟏) ℙ (GID × Signp−1 × BID) 

𝜑(𝐁) ℙ (GID × Signs × BID) 

𝜑(𝐁′) ℙ (GID × Signru × BID) 

𝜑(𝐃𝐄𝐋) ℙ (PID × Signd × BID) 

𝜑 (𝐁𝐔𝐂′) ℙ (GID × Signall × BID) 

𝜑(𝐁𝐔𝐂) ℙ (GID × Signm × BID) 

𝜑(𝐓𝐧) ℙ(PID ×Signnew× BID × ℓ) 

𝜑 (𝐓𝐂𝐭𝐒) ℙ (GID × SignCt × BID) 

𝜑(𝐁𝐀-𝐁𝐔𝐂) ℙ (GID × SignBA × BID) 

𝜑(𝐓𝐧′) ℙ (GID × Signnew`× BID × Tct) 

𝜑(𝐀-𝐁𝐔𝐂) ℙ (GID × Signa × BID) 

𝜑(𝐓𝐩) ℙ (GID × QI× BID) 

𝜑(𝐓𝐂𝐭𝐐) ℙ (GID × QI × BID) 

𝜑 (𝐓-𝐐) ℙ (GID × QI × BID × 𝜆 × k) 

𝜑 (𝐚𝐬𝐠-𝐯𝐚𝐫) ℙ(𝛼 × 𝛽× 𝛾) 

𝜑(𝐚𝐫𝐫𝐚𝐲) ℙ (GID × QIsort × BID ×  𝛾 ) 

𝜑(𝐆𝐞𝐧𝐀𝐫𝐫𝐃𝐚𝐭𝐚) ℙ (GID × QIarray × BID) 

𝜑 (𝐓𝐬𝐨𝐫𝐭) ℙ GID × QIsort× BID ×  𝛾) 

𝜑 (𝐓𝐬𝐨𝐫𝐭′) ℙ (GID × GQI × BID) 

𝜑 (𝐆𝐞𝐧𝐓𝐃𝐚𝐭𝐚) ℙ (GID × QIT × BID) 

𝜑(𝐆𝐞𝐧𝐃𝐚𝐭𝐚) ℙ (GID × QIF × BID) 

𝜑 (𝐔𝐁𝐊) ℙ (QIadv × Signadv) 

𝜑(𝐒𝐢𝐠𝐧 𝐃𝐢𝐬) ℙ (QI × Signdis) 
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FIGURE 2 HLPN of 𝜏-safe (l, k)-diversity model with adversarial attacks identification 



performs an anonymization process over the raw data, seeking to minimize AS  values disclosure. Data is then 

published and can be subject to exploitation by an adversary. 

Like 𝜏-safety [11], the 𝜏-safe (l, k)-diversity algorithm [12] consists of four phases i.e. classification, balancing, 

assignment, and generalization. The first three phases focus on AS only while generalization phase focuses on AQI. 

Bucket table is specifically used to store AS signatures. The detailed algorithm is given in [12]. The transition rule is 

given for adversarial collusion attack only, for the identification of inconsistence signatures. A general critical review 

for 𝜏-safe (l, k)-diversity algorithm with respect to HLPN transitions is given below. 

The problem exists in classification phase that divides the records (Ts  or Tr) into their correct buckets (l-diverse) along 

with their signatures but results in inconsistent signatures. Figure 2 shows that for a record to be added to a bucket if 

same signature exists then transition Crt-BktS, else transition Crt-OthrBkt for a new signature bucket. The reinserted 

tuples from Del table are processed via transition Crt-BktRe and finally all the different signatures are stored in BUC’ 
via transition updallBkt. The balancing phase using transition Balancing, fills the unfilled created buckets with the 

same number of sensitive values. Tn or TCtS (counterfeit tuples) are used to balance the buckets. While our proposed 

approach uses the Cach table instead to these noise records. The assignment phase in (l, k)-diversity [12] is exactly 

the same as in [11]. This phase divides the records in the Tn into correct buckets. Transition addCt adds counterfeit 

to Tnew to make it l-eligible. The transition Chk asg-equ check the Tn via asg-var. Transition CrtBktA creates the l-

eligible buckets and store it along with balanced buckets, all together at one place.  

Generalization initializes the QI values with counterfeit QI part (TCtQ) in transition Initialize-T, satisfying the k-

anonymity and sorting it. The 𝐶ℎ𝑒𝑐𝑘 𝛾 condition creates the generalize data at place GenData which is received either 

via transition GenArray or GenT. The places GenData and BA-BUC represents tables GT and BT respectively.  

The inconsistent signatures created in classification phase allows the privacy breach. The subsection: 1.1 motivation, 

illustrate the collusion attack with example. The transition Collusion Attack is the adversary action that uses record 

signatures from previous alternate releases which leads to the privacy breach, given in rule 1. The Collusion Attack 

transition receives two data flows from places: GenData and BA-BUC. Inside the Sign_Disc() function the adversary 

correlate the sensitive knowledge of BA-BUC and UBK with QI values from GenData (Rule 1 depicts the Fig. 2 

collusion attack transition). The adversary correlates same record signatures in different releases by continuously using 

Eq. 2 iteratively to get UBK, until it results in Signdis and QI identification, against an individual.  

𝑹 ( 𝑪𝒐𝒍𝒍𝒖𝒔𝒊𝒐𝒏 𝑨𝒕𝒕𝒂𝒄𝒌𝒔 ) = ∀ 𝑖45 ∈ 𝑥45, 𝑖46 ∈ 𝑥46, ∀ 𝑖48 ∈ 𝑥48, 𝑖49 ∈ 𝑥49 | 
𝑆𝑖𝑔𝑛_𝐷𝑖𝑠𝑐({𝑖46[2], 𝑖48[2]} ∪ 𝑖45[2]) → 𝑖49[2] = 𝑖1[2] ∧ 𝑖49[1] = 𝑖29[2])      Rule 1 

5. Proposed (𝝉, 𝒎)-slicedBucket privacy model 

Preserving privacy with enhanced utility is NP-hard problem specially in sequential dynamic publication. An intruder 

combines different releases to re-identify an individual sensitive information performing intersection or subtraction 

between the ECs in each release. The proposed (𝜏, 𝑚)-slicedBucket privacy model is an extension of 𝜏-safe (𝑙, 𝑘)-

diversity model [12] with a balance in utility and privacy using the slicing [13] and cell generalization [14-15] 

approaches. The proposed (𝜏, 𝑚)-slicedBucket privacy model is defined as following. 

Definition 11: (𝜏, 𝑚)-slicedBucket. A sequential published anonymized data T∗ = {T1
∗, T2

∗, T3
∗, … Tr

∗} where (1 ≤ j ≤
r), is said to be (𝜏, 𝑚)-slicedBucket anonymous if the following conditions are satisfied: 

1. Any release Tj
∗ at time j (1 ≤ j ≤ r) is 𝑚-unique and satisfies (𝜏, 𝑚)-slicedBucket ∀ j ∈ [0,1]. 

2. Record signature ∀t ∈ Tj
∗ during the lifetime [r, r − 1, r − 2, r − 3, … r − n] must remain consistent such that 

Sig(Tr
∗(t)) =  Sig(Tr−1

∗ (t)) = Sig(Tr−2
∗ (t)) = ⋯ = Sig(Tr−n

∗ (t)) , where 0 ≤ i ≤ n  and if ∃  a partial 

intersection probability {0 < p < 1} during any release then Sig(Tr
∗(t)) ∩  Sig(Tr−1

∗ (t)) ∩ Sig(Tr−2
∗ (t)) ∩

… ∩ Sig(Tr−n
∗ (t)) = ∅, ∀ internal updates. 

3. Shuffle ACQI  and AS  values inside the sliced buckets randomly in each anonymized release i.e. 

T1
∗, T2

∗, T3
∗, … Tr

∗ before publishing. 

The three conditions for the proposed (𝜏, 𝑚)-slicedBucket privacy model guarantees privacy for the anonymized 

release. Condition 1 guarantee 𝑚-uniqueness for each 𝑘-anonymous SBUC over time. Condition 2 maintain consistent 

signature for the same record during its lifespan. This ensures protection from collusion attack. Condition 3 guarantee 

protection against presence or membership attack. The random shuffling of sensitive values inside SBUCs in any 

Tj
∗ create fake tuples which misguide the adversary. Collectively the proposed system provides protection from 

collusion attack and membership disclosures attack. 

The detail explanation for the proposed (𝜏, 𝑚)-slicedBucket privacy model are given below.     

 

5.1 slicedBucket (SBUC) 



To create slicedBucket (SBUC) the data are partitioned both vertically and horizontally using slicing technique. 

Signature of each slice must be m-invariant during each release. Vertical partitioning merges co-related AQIs into 

ACQIs where each column consists of subset of correlated attributes. This reduces data dimensionality and improve 

generalization for more utility. The actual SBUCs are formed by performing horizontal partitioning of the tuples. 

Horizontal partitioning groups the same or closer distance QI records into an almost homogeneous cluster or SBUC. 

Each SBUC is processed separately by applying the m-unique constraint. Thus, an anonymized release Tj
∗, published 

at time j  (1 ≤ j ≤ r)  using the proposed (𝜏, 𝑚) -slicedBucket privacy model has ACQI s and As . For preventing 

membership disclosure attack or presence attack the values inside each SBUC are permuted randomly to break the 

association among different columns and attributes but the association within each bucket will be preserved. This 

creates fake tuples which misguides the intruder. The fake tuples produced are not considered as invalid because we 

assume the common diseases for male and female.  

Table 6 shows the anonymous release T1
∗  at time 1 of the original microdata Table 1c. The three AQI  are 

{𝑎𝑔𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑧𝑖𝑝𝑐𝑜𝑑𝑒} and AS is {𝐷𝑖𝑠𝑒𝑎𝑠𝑒}. The co-related attributes 𝑎𝑔𝑒 and 𝑔𝑒𝑛𝑑𝑒𝑟 (via Eq. 3) are merged to 

form a column. The 𝑧𝑖𝑝𝑐𝑜𝑑𝑒  and 𝑑𝑖𝑠𝑒𝑎𝑠𝑒  are drawn as separate attributes. Values in each slicedBucket of the 

anonymized release are randomly permuted to break the association between the uncorrelated attributes.  

 

5.2  (𝝉, 𝒎) persistent invariance 

The (𝜏, 𝑚) keeps persist during all the releases to prevent signature variance inside the slicedBuckets for each record. 

𝜏  keep all the internal updates for a record while m maintains the m-invariance diversity without counterfeit in 

slicedBuckets for sequential releases. Signature of a record must fulfill, Sig(Tr
∗(t)) =  Sig(Tr−1

∗ (t)) = Sig(Tr−2
∗ (t)) =

⋯ = Sig(Tr−n
∗ (t))  and if ∃  a partial intersection probability {0 < p < 1}  during any release then Sig(Tr

∗(t)) ∩

 Sig(Tr−1
∗ (t)) ∩ Sig(Tr−2

∗ (t)) ∩ … ∩ Sig(Tr−n
∗ (t)) = ∅ . If for a specific record during all releases the ∩ ≠ ∅  then 

(𝜏, 𝑚) adds the tuples from Tn  or Cach table (Table 1b), otherwise will store back the same record in Cach for 

publishing in next releases. During internal updates, the same record signature from previous releases is checked in 

Upd table history (see Figure 3 (a) and (b)) otherwise new signature will be created according to definition 11.  

Table 6, Table 7 and Table 8 are the 2-diverse dynamically published anonymized releases T1
∗, T2

∗ and T3
∗ produced 

through (𝜏, 𝑚)-slicedBucket privacy model from the original microdata Table 1c. Initially the sensitive values create 

m-invariance signatures and the corresponding records are added in the buckets. For a specific record, their signature  

 
TABLE 6 2-Anonymous T1

∗ 

Patient (Age, Gender) Zip Code Disease 

p1 

p2 

(21-27, M) [21] 

(21-27, M) [27] 

47*** [47907] 

47*** [47303] 

Bronchitis 

Aids 

p3 

p4 

(33-58, F) 

(33-58, F) 

47905 

47905 

SSM-pos 

Asthma 

p5 

p6 

(54, *) [M] 

(54, *) [F] 

4790* [47906] 

4790* [47902] 

Flu 

Dyspepsia 

p7 

p8 

(64-65, *) [64, F] 

(64-65, *) [65,M] 

47308 

47308 

Gastritis 

Cardiac 
 

TABLE 7 2-Anonymous T2
∗ 

Patient (Age, Gender) Zip Code Disease 

p1 

ch1 

(21-22, M) [21] 

(21-22, M) [22] 

4790* [47907] 

4790* [47906] 

Bronchitis 

Aids 

p3 

p10 

(33-45, F) [33] 

(33-45, F) [45] 

4790* [47905] 

4790* [47901] 

Glaucoma 

Diarrhea 

p5 

p6 

(54, *) [M] 

(54, *) [F] 

4790* [47906] 

4790* [47902] 

Flu 

Dyspepsia 

p7 

ch2 

(60-64, *) [64, F] 

(60-64, *) [60,M] 

4730* [47308] 

4730* [47302] 

Gastritis 

Cardiac 

p8 

ch3 

(22-65, *) [65, M] 

(22-65, *) [22, F] 

4730* [47308] 

4730* [47305] 

Dyspepsia 

Flu 
 

TABLE 8 2-Anonymous T3
∗ 

Patient (Age, Gender) Zip Code Disease 

p1 

ch1 

(21-22, M) [21] 

(21-22, M) [22]] 

4790* [47907] 

4790* [47906] 

Bronchitis 

Aids 

p3 

p4 

(33-58, F) [33] 

(33-58, F) [58] 

47905 

47905 

SSM-pos 

Asthma 

p10 

p12 

(40-45, *) [45, F] 

(40-45,*) [40, M] 

47*** [47901] 

47*** [47407] 

Diarrhea 

Glaucoma 

p5 

p6 

(54, *) [M] 

(54, *) [F] 

4790* [47906] 

4790* [47902] 

Flu 

Dyspepsia 

ch2 

ch4 

(60-64, *) [60, M] 

(60-64, *) [64, F] 

4730* [47302] 

4730* [47304] 

Cardiac 

Gastritis 

p8 

ch3 

(22-65, *) [65, M] 

(22-65, *) [22, F] 

4730* [47308] 

4730* [47305] 

Dyspepsia 

Flu 
 

 

remains consistent during each release. At time 1, 2-anonymous 2-diverse table (Table 6) is published. At time 2, the 

records p3=SSM-pos and p8=Cardiac are updated (internal update) to p3=Gloucoma and p8=Dyspepsia, and p2=Aids 

and p4=Asthma are deleted (external update), while records p9=Malaria, p10=Diarrhea and p11=Diarrhea are newly 

inserted (external update), as shown in Table 7. Because of the same sensitive values for p10 and p11, one of the 

sensitive values say p11 is stored in Cach. Since p9 is the last tuple to accommodate and can use a tuple from Cach to 



create a new signature but the algorithm does not do so because this will empty the Cach. Instead p9 is cached in Cach 

table till next release. At time 3, for Table 8, record p7 is deleted (external update), p3 updates (internal update) to the 

same sensitive value SSM-pos (chances of collusion attack but prevented from re-insertion) as was in Table 6, records 

p12=Glaucoma and p13=Pneumonia are newly inserted (external update) and p4 is re-inserted (internal update) from 

delete table i.e. Del. Figure 3 illustrates the data processing inside the buckets during T2
∗ and T3

∗ and the data inside 

the three supporting tables i.e. Del, Upd and Cach for each. The anonymized Tables 6,7 and 8 obtained via proposed 

Algorithm 1 (𝜏, 𝑚)-slicedBucket privacy model shows that after all these internal and external updates the signature 

of all the SBUCs remain consistent for the same record among themselves.    

 

5.3 Empowering 𝐂𝐚𝐜𝐡 tuples over Counterfeit tuples   

Cache Table 1b named as Cach (obtained via Algorithm 2), is a novel idea to avoid the use of dummy counterfeit 

records. In re-publication of dynamic data, among the three major operations i.e. insertion, update and deletion in 

PPDDP, deletion is more challenging because of the critical absence dilemma. Most of the work [15], [32] related to 

dynamic publication considers insertion and update and do not focus the deletion operation. The well-known previous 

work that talk about the deletion are [10-12]. They have adopted the direct and easy option of fake tuples named as 

counterfeit. So, dynamic data publication adds the counerfiets while the differential priacy [19], [47] adds laplacian 

noise. We bridge the gap similar to [48] of synthatic and semantic data publishing via Cach table (actual records) but 

in a dynamic data sequential scenario where no counterfiet or noise is used and have consistent signatures. In this 

paper, the counterfeit avoidable scenario is considered. The basic purpose of the Cach is not to use any counterfeit in 

any case specially for critical absence caused by deletion operation. To the best of our knowledge, providing Cach 

records instead of counterfeit fake records is the first solution proposed in this work. Whenever there is a need to 

create 𝑚-unique signatures, records from Cach table are ready to use while all those tuples that cannot fulfill m-unique 

criteria are stored back in Cach table for future release. In this way deletion from and insertion into the Cach is 

performed automatically during the proposed algorithm execution.  

Table 7 is the anonymized release at time 2, i.e. T2
∗ uses ch1, ch2 and ch3 tuples from Cach table to fulfill the m-unique 

and signature consistency constraints. Similarly, for T3
∗ ch4 is inserted from Cach. This whole scenario explains that 

the counterfeit tuples have no use at all in the proposed approach. The proposed Cach idea drastically enhances the 

truthfulness of the anonymized releases. 

 

5.4   Proposed Algorithm 

The proposed Algorithm 1 consists of the following steps: (i) Cache table creation (ii) Grouping correlated attributes 

(iii) Classification (iv) Balancing (v) Assignment (vi) Partitioning (vii) Cell Generalization. 
 

Algorithm 1. (𝜏, 𝑚)-slicedBucket privacy algorithm Big Picture 

𝐑𝐞𝐪𝐮𝐢𝐫𝐞: Tr, Tr−1
∗ , Cach, Del, Upd 

1. Calculate Cach table: Trep  and Tso 

2. Calculate correlating attributes: chi-square method  

3. Calculate initially and after each release: 
 Tn = Tr − Tr−1, Ts = Tr ∩ Tr−1, Tu = Sig(tr) ≠ Sig(tr−i) 

4. Reinsertion: Tr = Sig(Del(t)) 

5. SBUC = Classify(Ts, Tr−i
∗ , Tu, Tr, Del) 

6. Tr
∗ = Balancing-Assignment-Partition-CellGeneralization 

7. Publish Tr
∗ 

 

(i) Cache table Creation: The original microdata consists of thousands of records. There are limited number of unique 

AS values frequently repeating over the tuples. Before anonymization, a Cach table is created (Algorithm 2) from the 

original microdata whose records will be used to beat the counterfeit tuples. Cach consists of two different types of 

records, (i) single record from repeated same SA values (ii) copy of a single occurred SA record. The Cach is a small 

table as compared to the whole dataset. For example, the dataset used in our experiment consists of 60000 records that 

have only 49 sensitive attribute values, which is only .082% of the whole dataset. This small amount of records for 

delaying in publishing will not affect the anonymized release, instead it can effectively increase the utility. Therefore, 

Cach table in the proposed (𝜏, 𝑚)-slicedBucket privacy model, not only vanishes the counterfeit tuples but also 

implies (𝑒, 𝛿)-differential privacy [48] and provides strong privacy guarantee. Table 1b is an example of Cach table 

obtained from original Table 1a before its anonymization. Figure 3 (a) and (b) also illustrates the Cach table during 

T2
∗ and T3

∗ creation. 

 



Algorithm 2. 𝐂𝐚𝐜𝐡 Creation 

𝐟𝐨𝐫 all records in Dataset 𝐝𝐨 

Trep ← Comp rep(SA) 

Cach ← single_rec_frm(Trep) 

Tso ← Comp single_occured(SA) 

Cach ← copy_of(Tso) 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐫𝐞𝐭𝐮𝐫𝐧 Cach 

 

(ii) Grouping Correlated Attributes: Generalization i.e. k-anonymity, losses utility in case of high-dimensional data. 

For effective generalization that have higher data utility, the data must be low-dimensional. But low dimensions do 

not mean to drop any attribute from the dataset. We adopt the slicing [13] approach to create single column from 

multiple co-related attributes by calculating affinity between the attributes. This improves the privacy i.e. break the 

association between uncorrelated attributes. Because uncorrelated attribute values are less associated with each other 

and thus without grouping the correlated attributes the identification risk is higher. Algorithm 3 calculates the affinity 

∅2 between any two attributes Ai and Aj using Eq. 3.  

 
Algorithm 3. Calculate co-related attributes 

𝐟𝐨𝐫 all attributes in microdata T 𝐝𝐨 

Calc − affinity (Ai & Aj) i. e. ∅2(Ai, Aj) 

𝐞𝐧𝐝 𝐟𝐨𝐫 

 

A commonly used method for measuring the correlation between two categorical attributes is chi-square method or 

mean-square contingency coefficient [13-14]. This method groups the attributes according to their pairwise affinity. 

Attributes in different columns have high affinity within columns and low affinity between columns. 

Let there are two attributes A1  and A2  with domain values {v11, v12, … v1d1
}  and {v21, v22, … v2d2

}  respectively, 

where d1 and d2 are domain sizes. The mean-square contingency coefficient between A1 and A2 can be calculated as 

shown in Equation (3). 

∅2(A1, A2) =
1

min(d1,d2)−1
∑ ∑

(fi j−fi.f.j)2

fi.f.j

d2
j=1

d1
i=1     (3) 

where fi. And f.j are the fractional occurrences of v1i and v2j in the data, respectively. fij is the fractional occurrence 

of v1i and v2j. Formal definitions of fi. and f.j which are the marginal totals of fij are: fi. = ∑ fij
d2
j=1  and f.j = ∑ fij

d1
i=1 . 

Here 0 ≤ ∅2(A1, A2) ≤ 1. 

In this work we adopt the same attributes correlation approach as in [9]. The attributes {age, gender} have high affinity 

and form the first column, i.e. ACQI. The zipcode and disease are considered as separated attributes. For attributes, age 

and gender, affinity example can be seen in Table 6, Table 7 and Table 8.    

 

(iii) Classification: This phase is the main source of signatures inconsistency, which is not modeled properly in [11] 

and in [12]. In this phase the SBUCs are created and classify the records i.e. t1, t2, t3, … , tn in Ts,  Tu and Tr into their 

correct buckets using Tr−1  (1 ≤ j ≤ r), Del and Upd tables. Each SBUC has a unique signature created. Attribute 

sensitive values and signature of SBUC (Sig(SB)) with respect to an individual record are considered in this phase 

only. Records in Ts get the same signatures from Tr−1
∗ . If signature for records in Tu or Tr exists in Upd or Del tables, 

respectively then the same signature SBUCs are created for those records. The entry for re-inserted records are deleted 

from Del table. The crucial part is if signature does not exist for Tu or Tr, or any one of them. If signature for records 

in Tu or Tr does not exists in Upd or Del tables then the tuples are stored in temporary arrays as Ti
un (updated new 

records) or Ti
rn (re-inserted new records), respectively and are partially treated as new tuples. The new signatures for 

new buckets for records in Ti
un  or Ti

rn  are created based on zero integration condition (see definition 11) and 

Algorithm 6 assignment condition. Because the work in [11] or [12] are not sure about the bucket size for the records 

in Tun or Trn which can be 𝛽 or 𝛽+1, where 𝛽=m. which is possibly the main reason for signature inconsistency. The 

new signatures from Tun or Trn are stored permanently in Upd table along with the corresponding records to avoid 

the collusion attack. The classification phase is shown in Algorithm 4. 

Figure 3 shows the classification phase for sequential releases of T2
∗ and T3

∗ at time 2 and time 3 respectively. At time 

2 Ts={p1, p5, p6, p7}, and at time 3 Ts={p1, p5,  p6,  p8,  p10, ch1, ch2, ch3}. At time 2, Tu={p3=Glaucoma, 

p8=Dyspepsia}. Both p3 and p8 are new sensitive values for each record at time 2. So new signature are created having 

intersection zero with all its previous releases, i.e. Tr−2, Tr−3, … , Tr−n = ⋂ 𝑆𝑖𝑔(𝑡)𝑟−𝑛
𝑟−2 = 0 and checked via assignment 



condition in Algorithm 6. The classification algorithm in [12] checks integration with only Tr−1  and create new 

signature if there is zero integration while we check integration with all its previous releases for the same record, and 

verify the assignment condition. At time 3, Tr={p4} which is the only re-inserted record from Td={p2, p4} at time 1. 

The p4 SBUC got the same signature as was at time 1 from Del table. At time 3, the only Tu={p3}. If p3 updates to 

the same disease as at time 1, i.e. SSM-pos, then it can cause collusion attack. Both the 𝜏-safety and 𝜏-safe (𝑙, 𝑘)-

diversity do not consider the same sensitive value reappearance at time 3. In our proposed technique the same signature 

already available in Upd table as was at time 1, is checked and reused. New signature will not be created for p3 internal 

re-update. 

 
Algorithm 4. Classification (Ts, Tr−1

∗ , Tr, Tu, Del) 
Initialize SB = 0 

𝐟𝐨𝐫 all records t in Ts 𝐝𝐨     

𝐢𝐟 (S(t) ∈ Sig(STr−1(t))) 𝐭𝐡𝐞𝐧 

SB = Crt_SBkt(Sig(STr−1(t)))  

𝐞𝐧𝐝 𝐢𝐟 

put(SB, t) 

𝐢𝐟 (SB ∉ SBUC)  𝐭𝐡𝐞𝐧 

SBUC = SBUC ∪ {SB} 

𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐟𝐨𝐫 all records t in Tu 𝐝𝐨 

𝐢𝐟 (S(t) ∈ Upd (Sig(STr−2(t)) or Sig(STr−3(t)) or … or Sig(STr−n(t)))) 

SB = Crt_SBkt(Sig(STr−2(t) or STr−3(t) or … or STr−n(t))) 

𝐞𝐥𝐬𝐞 

Ti
un = ti          //temporary array 

𝐞𝐧𝐝 𝐢𝐟 

put(SB, t) 

𝐢𝐟 (SB ∉ SBUC)  𝐭𝐡𝐞𝐧 

SBUC = SBUC ∪ {SB} 

𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐟𝐨𝐫 all records t in Tun 𝐝𝐨  //processing updates as new tuples wth ∩ 

SB = Crt_un_SBkt(Sig(S(t)) ∩ 

Upd (Sig(STr−2(t)) or Sig(STr−3(t)) or … or Sig(STr−n(t))) = 0  

 ∧ Call Algoritm 6, line 5 to 13 where Tn = Tun 

addToUpd(t, Sig(t)) 

put(SB, t) 

𝐢𝐟 (SB ∉ SBUC)  𝐭𝐡𝐞𝐧 

SBUC = SBUC ∪ {SB} 

𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐟𝐨𝐫 all records t in Tr 𝐝𝐨  

𝐢𝐟 (S(t) ∈  Sig(Del(t)) 𝐭𝐡𝐞𝐧 

SB = Crt_SBkt(Sig(Del(t))) 

Delete-entry Sig(Del(t)) 

𝐞𝐥𝐬𝐞 

Ti
rn = ti          //temporary array  

𝐞𝐧𝐝 𝐢𝐟 

put(SB, t) 

𝐢𝐟 (SB ∉ SBUC)  𝐭𝐡𝐞𝐧 

SBUC = SBUC ∪ {SB} 

𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐟𝐨𝐫 all records t in Trn 𝐝𝐨  //processing reinst as new tuples wth ∩  

SB = Crt_New_SBkt(Sig(S(t)) ∩ 

Upd (Sig(STr−2(t)) or Sig(STr−3(t)) or … or Sig(STr−n(t))) = 0  

 ∧ Call Algoritm 6, line 5 to 13 where Tn = Trn 

addToUpd(t, Sig(t)) 

put(SB, t) 

𝐢𝐟 (SB ∉ SBUC)  𝐭𝐡𝐞𝐧 

SBUC = SBUC ∪ {SB} 

𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐫𝐞𝐭𝐮𝐫𝐧 SBUC 



 

(iv) Balancing: This phase balances the SBUCs created in classification phase through Tn and Cach table records. A 

SBUC is said to be balanced if every sensitive value in its signature is owned by the same number of tuples. There 

must be atleast one record respondent in the SBUC otherwise the bucket will be deleted. In the proposed approach we  

  
(iv) Algorithm 5. Balancing 

(SBs from Classifications phase, Tn, Cach) 

𝐟𝐨𝐫 all records in Tn 𝐝𝐨 

Trep ← Comp rep(SA) 

Cach ← single_rec_frm(Trep) 

Tso ← Comp single_occured(SA) 

Cach ← copy_of(Tso) 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐫𝐞𝐭𝐮𝐫𝐧 Cach 
𝐟𝐨𝐫 all SBi in SBUC 𝐝𝐨 

𝐢𝐟 SB is unbalanced 

𝐢𝐟 (Sig(SBUC) → Exp[Tn]) 

put(Exp[(Tn(S(t)))], SB) 

𝐞𝐥𝐬𝐞 𝐢𝐟 (Sig(SBUC) → Exp[Cach)) 

put(Exp[(Cach(S(t)))], SB) 

𝐞𝐥𝐬𝐞 

(Sig(SBUC) ∉ Exp[Tn]) ∧  (Sig(SBUC) ∉ Exp[Cach]) 

put(SBUC(S(t)), Cach) 

𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐟𝐨𝐫 
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do not simply add counterfeit to balance the SBUCs as in [10-12] instead the unbalanced SBUCs are filled with the 

expected Tn or records from Cach. Balancing Algorithm 5 begins by updating the Cach table (Section 5.4(i)). This 

not only populates the Cach but also implies the (𝑒, 𝛿)-differential privacy [48] which improves the privacy in the 

published release. 

Figure 3 illustrates the balancing phase at time 2 and time 3 during T2
∗ and T3

∗ release. As mentioned in subsection 5.2, 

at time 2, the three newly inserted tuples Tn={p9=Malaria, p10=Diarrhea, p11=Diarrhea}. Because of the insertion 

of two similar sensitive values one (for example p11) is stored in Cach while the other (p10) is used to create a new 

signature.  p10 balances the second SBUC. The p9 is stored in Cach (see subsection 5.2). The remaining SBUCs, first, 

fourth and fifth are balanced with Cach table ch1, ch2 and ch3 tuples. Similarly at time 3, Tn={p12=Glaucoma,  

p13=Pneumonia}. p12 is used to balance signature for third SBUC. A tuple ch4=Gastritis from Cach is inserted to 

balance the ch2=Cardiac SBUC. Since there is no tuple for p13 to create signature, it is stored in Cach for publishing 

in next release. At the end of balancing phase all the SBUCs created during the classification phase are balanced. 

 

(v) Assignment: This phase is the same as in [11] and [12] to assign the remaining Tn into their correct SBUCs. After 

completion of Algorithm 6, all the remaining Tn records if exists create new SBUCs and satisfy m-uniqueness property. 

For ensuring m-eligibility, records from Cach are added. The last records during EC creation in Tn that cannot create 

signatures with other records from Tn, are cached back that will help for balancing and signature eligibility during 

next release.  

Similar to [10] the variables α and 𝛽 are computed, to assign the correct number of records and to handle the SBUC 

signatures, respectively. Let C = (svi, sv2, sv3, …  , svλ) be the distinct As values list where 𝜆 is the total number of 

distinct As values in the Tn. Here, the number of tuples, svi(1 ≤ i ≤ 𝜆) are collected and sorted in descending order. 

In addition, 𝛾 = |Tn| represents the total number of records. Signature of SBUC is created by choosing 𝛽 sensitive 

values  from each C such that SBUC has signature (svi, sv2, sv3, …  , svβ). 𝛼 picks the exact tuples with minimum 

distance in QI column from 𝛾 for a SBUC. The process of selecting 𝛼 records repeats iteratively for each sensitive 

value in svi, sv2, sv3, …  , svβ  to form signature of SBUC in each cycle such that the remaining records must be m-

eligible. Since the sensitive values are in descending order the most frequent sensitive value is sv1 or sv𝛽+1. Therefore, 

𝛼 and 𝛽 are formulated via inequalities 𝛼 ≤ sv𝛽  and sv1 − 𝛼 ≤
(𝛾−𝛼.𝛽)

𝑚
 and sv𝛽+1 ≤

(𝛾−𝛼.𝛽)

𝑚
 if 𝛼 exists, otherwise 𝛽 is 

incremented to solve 𝛼 again. This assignment condition is also used by the classification phase for Tun  and Trn 

records. At the end of the assignment phase all the Tn have been assigned to their correct balanced SBUCs.  

Figure 3 (a) and (b) depicts the assignment phase in bucketized form for T2
∗ and T3

∗. At time 2 and time 3, although 

Tn={p9=Malaria} and Tn={p13=𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎} respectively but have been stored in Cach as explained in balancing. 

This means that the last tuples are stored back in Cach because of not having suitable record to create signature with. 

After completion of assignment phase all the SBUC are balanced and completed. No tuple in Tn is further lifted to 

accommodate.    

  
(iv) Algorithm 6. Assignment (𝐓𝐧, 𝐒𝐁𝐔𝐂, 𝐂𝐚𝐜𝐡) 

initialize λ = Total distinct sensitive attribute values in Tn 

𝐢𝐟 ( 
Tn

m
≱ m)  𝐭𝐡𝐞𝐧  

add tuples from Cach in Tn //we will not add counterfeit in Tn 

𝐞𝐧𝐝 𝐢𝐟 

𝐰𝐡𝐢𝐥𝐞 |Tn ≠ ∅| 𝐝𝐨 

γ = |Tn| 
Calculate C = (svi, sv2, sv3, … , svλ), i. e. svi(1 ≤ i ≤ λ) 

𝛽 = 𝑚 

𝛼 = largest positive integer that satisfy the ineqalities below 

𝐢𝐟 ! (α ≤ svβ and sv1 − α ≤
(γ−α.β)

m
 and svβ+1 ≤

(γ−α.β)

m
 𝐭𝐡𝐞𝐧  

𝛽 = 𝛽 + 1 

go to line 𝛼 calculation above 

𝐞𝐧𝐝 𝐢𝐟 

Create − Bucket SB having (Sig(SB) = (svi, sv2, sv3, … , svβ) 

𝐢𝐟 (SB ∉ SBUC) 𝐭𝐡𝐞𝐧 

SBUC = SBUC ∪ {SB} 

𝐞𝐧𝐝 𝐢𝐟 

𝐟𝐨𝐫 i = 1 to 𝛽 𝐝𝐨 

SB ← α nearest tuples with svi from Tn 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

𝐫𝐞𝐭𝐮𝐫𝐧 SBUC 



 

(vi) Partition: This phase deals with the AQIs. Using Algorithm 7 the microdata T has been transformed to SBUCs 

and needs to partition to their individual SBUCs with minimum distance between the AQI values in a sorted form. 

SBUCs produced by assignment phase usually contains multiple of s tuples, i.e. s ≥ 𝑚 sensitive values. The extra s 

tuples are removed from SBUCs by splitting or partitioning the SBUCs into balanced new SBUCs i.e. SBUCnew with 

the same signature. While creating SBUCnew all those s tuples are selected from a SBUC that have the minimum 

distance between the AQI values for the purpose of minimum cell generalization which will increase the utility of the 

published data. The partitioning always produces 𝑚-eligible SBUCs because SBUCs are multiples of s. The resulted 

SBUCsnew are sorted in ascending order with respect to their QI values. 

 
(iv) Algorithm 7. Partition (SBUC, SBUCnew) 

Ssbuc = {SBUC} 

𝐰𝐡𝐢𝐥𝐞 (SBUC > s), where s ≥ 𝑚 
SBUC

s
 and  

Crt_new_SBkt(Sig(SBUCnew) = Sig(SBUC), 

with min. interval w.r.t. Ai
QI

 

𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

𝐟𝐨𝐫 each SBUCnew 𝐝𝐨  

sort each SBUCnew 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐫𝐞𝐭𝐮𝐫𝐧 individual SBUCsnew 

  

(vii) Cell Generalization: In a relational approach a cell is an intersection of row and column.  In our approach, a cell 

is a cross-section of column and a slicedBucket. We adopt a flexible generalization technique named as cell 

generalization (Algorithm 8) where each cell is generalized independently. In a microdata table T, if a column is 

Cc, (1 ≤ i ≤ c) , a slicedBucket is Bb, (1 ≤ j ≤ b), then a cell is represented as CB(i,j). During the generalization, each 

attribute value of CB(i,j) is generalizes till the privacy requirements. Cell generalization has more utility than column 

or cut generalization [15], because it does not generalize the whole slicedBucket. For example, if the dataset T consists 

of attributes, age, gender, zipcode and disease. The following cell generalization rules in a function 𝑔𝑒𝑛() are followed 

independently on each attribute. 

a) Age will be generalized to any interval in the range [a, b] where 𝑎, 𝑏 ∈ 𝐴1 and 𝑎 ≤ 𝑏. 

b) Gender can be M or F, therefore it is generalized by suppression only, i.e. the original value is retained or it 

is suppressed. 

c) Zipcode is generalized in the prefix format. For example zipcode 47901 will be generalized to any of the 

form, 4790 ∗, 479 ∗∗, 47 ∗∗∗, 4 ∗∗∗∗, ∗∗∗∗∗, but will be generalized as minimum as possible. 

d) Disease is a sensitive attribute and no generalization is allowed.  

For example, Table 6, Table 7 and Table 8 shows the cell generalization for the three anonymized releases T1
∗, T2

∗, T3
∗, 

respectively.    

 
(iv) Algorithm 8. Cell Generalization (Tr) 

𝐟𝐨𝐫 each SBUCi in Tr 𝐝𝐨 

check the tuple ti validation 

𝐢𝐟 invalid record exists then 𝐝𝐨 

genr SBUCj = gen(CB(i,j)) to satisfy 𝑘-anonymity 

𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐟𝐨𝐫 

return 𝐓𝐫
∗ 

 

After generalization, attribute values on both sides i.e. ACQI and As values are randomly permuted in each SBUC to 

break the linking between the uncorrelated attributes i.e. ACQI and As. This limits the knowledge of an adversary and 

prevents the membership disclosure attack. The identifier attributes are removed and Tr
∗ is ready to publish. In the 

next section we formally model our proposed approach and show its verification against collusion attacks and 

membership disclosure attacks using the HLPN rules. 

 

5.5 Formal modeling and analysis for (𝝉, 𝒎)-slicedBucket privacy model 

The microdata is processed through the (𝜏, 𝑚)-slicedBucket privacy model to produce an anonymized form that can 

prevent from collusion attacks and membership disclosure attacks. In this section we provide formal modelling for the 



proposed privacy model through HLPN and its invalidation with respect to identified collusion and membership 

attacks. 

The HLPN for the proposed (𝜏, 𝑚)-slicedBucket privacy model with adversarial attacks invalidation is given in Figure 

4, which is broadly consists of three entities: end user, trusted data sanitizer and adversary. There are 27 Places (P) 

and 22 Transitions (T) involved in the modelling process. The P description with variable type are described in Table 

9a and the identification of P and mapping is in Table 9b. To begin with the model transitions, new token enters the 

model through the transition Input 1. The proposed algorithm complete process is depicted in rules 2-21, while rules 

22 and 23 shows the prevention from collusion attacks and membership disclosure attacks. 

The transitions Comp − rs and Single − rec − frm, compute the repeated AS values records and select single records 

from each, respectively. Similarly, transition Comp − so computes single occurred AS value records, while transition 

Copy − of stores single copy of that record in Cach table. So, the rules for the transitions to create the Cach table are 

2,3,4 and 5 as follows.  

 
𝑹(𝑪𝒐𝒎𝒑 − 𝒓𝒔) = ∀𝑖2 ∈ 𝑥2, 𝑖3 ∈ 𝑥3|  
𝑖3[1] ≔ 𝑖2[1] ∧ 𝑖3[2] ≔ 𝑖2[2] ∧ (𝑖3[3] ≔ 𝐶𝑜𝑚𝑝𝑟𝑠(𝑖2[3])) ∧ 𝑥3 ′ ≔ 𝑥3 ∪ {(𝑖3[1], 𝑖3[2], 𝑖3[3])}   Rule 2 

 

𝑹(𝑺𝒊𝒏𝒈𝒍𝒆 − 𝒓𝒆𝒄 − 𝒇𝒓𝒎) = ∀𝑖4 ∈ 𝑥4, 𝑖5 ∈ 𝑥5| 
𝑖5[1] ≔ 𝑖4[1] ∧ 𝑖5[2] ≔ 𝑖4[2] ∧ (𝑖5[3] ≔ 𝑠𝑟𝑓𝑟𝑚(𝑖4[3])) 

𝑥5′ ≔ 𝑥5 ∪ {𝑖5[1], 𝑖5[2], 𝑖5[3]}         Rule 3 

 

𝑹(𝑪𝒐𝒎𝒑 − 𝒔𝒐) = ∀𝑖6 ∈ 𝑥6, 𝑖7 ∈ 𝑥7| 

𝑖7[1] ≔ 𝑖6[1] ∧ 𝑖7[2] ≔ 𝑖6[2] ∧ (𝑖7[3] ≔ 𝐶𝑜𝑚𝑝𝑠𝑜(𝑖6[3])) ∧ 𝑥7′ ≔ 𝑥7 ∪ {(𝑖7[1], 𝑖7[2], 𝑖7[3])}   Rule 4 

 

 

TABLE 9a Description of places and types used in HLPN for (𝝉,m)-slicedBucket model 

Types Description 

PID An integer type for Patient user identifier 

BID An integer for bucket identifier 

𝐓𝐫𝐬 Records have repeated same sensitive values  

𝐓𝐬𝐨 Records have single occurrence of sensitive values. 

Sign Signature of SA at a specific level/phase. 

Cach’ Place holding updated Cach table  

𝐓′ Holding T with correlated attributes after Cach deduction 

𝐓𝐫−𝟏 Place holding dataset from previous release. 

𝐐𝐈𝐃𝐜𝐨𝐫 Type for Correlated QI attributes 

𝐒𝐢𝐠𝐧𝐬, 𝐒𝐢𝐠𝐧𝐮, 𝐒𝐢𝐠𝐧𝐧 Signature for same, updated and new tuples respectively 

FlagTF Boolean condition for either one or zero. 

SB Holds different record signatures during classification phase 

𝐫𝐧𝐒𝐁 Holds new signatures for Tr during classification phase 

𝐮𝐧𝐒𝐁 Holding record signatures for Tu during classification phase 

SBUC All updated record signatures during classification phase 

SBUC’ Holds final record signatures after Balancing & Assignment 

𝐀𝐬𝐠_𝐕𝐚𝐫 

Variables to check assignment equ. inequalities: 𝛼 for no. of 

buckets in Tn, 𝛽 is the no. of distinct SVs in bucket and  𝛾 is total 

number of distinct SVs in Tn. 

A_SBUC Holding set of records signatures after assignment phase. 

SBUC_new Holds top k individuals QIs in the data set. 

SBUC_sort Holds sorted QIs records in the data set. 

SBUC_gen 
Holds k-anonymous data in sliced bucket having QI and SA in 
each sliced bucket and is ready to publish. 

UBK Updated background knowledge 

Sign Dis Holds adversarial disclosed signatures. 

𝐌𝐒𝐡𝐢𝐩 Dis Holds adversarial disclosed  
 

TABLE 9b Mapping of data types on places 

Places Description 

𝜑 (T) ℙ (PID×QID × SAs) 

𝜑 (𝐓𝐫𝐬) ℙ (PID×QID × SAms) 

𝜑(𝐓𝐬𝐨) ℙ (PID×QID × SAso) 

𝜑(Cach) ℙ (PID×QID ×SAs) 

𝜑(𝐓′) ℙ (PID×QIDcor × SAs) 

𝜑(𝐓𝐫−𝟏) ℙ (QI×Signr−1) 

𝜑(𝐓𝐬) ℙ (PID×QID × SAsign) 

𝜑(𝐓𝐫) ℙ (PID × QID × SAdSign) 

𝜑(𝐓𝐮) ℙ (PID×QID × SAupdSign) 

𝜑(𝐓𝐧) ℙ (PID×QID ×SAs) 

𝜑(Del) ℙ (PID×QID ×Signr−1) 

𝜑(Upd) ℙ (PID×QID ×Signu) 

𝜑(Flag) ℙ (ConditionTF) 

𝜑(SB) ℙ(PID×QI×Signs×Signu×Signr×BID) 

𝜑(𝐫𝐧𝐒𝐁) ℙ (PID×QI × Signrnc ×BID) 

𝜑(𝐮𝐧𝐒𝐁) ℙ (PID×QI×Signunc ×BID) 

𝜑(SBUC) ℙ(PID×QI×Signall×BID) 

𝜑(SBUC’) ℙ(PID×QID×Signbal&n×BID) 

𝜑(Asg_Var) ℙ (𝛼 × 𝛽× 𝛾) 

𝜑(A_SBUC) ℙ (PID×QI×Signn×BID) 

𝜑(SBUC_new) ℙ (PID×QI×SignPRT×BID×s×m) 

𝜑(SBUC_sort) ℙ (PID×QIsort ×SignPRT×BID) 

𝜑(SBUC_gen) ℙ(QIkAnony×SignPRT) 

𝜑(UBK) ℙ (QIadv ×Signadv)  

𝜑(Sign Dis) ℙ (QI×Signdisclosure) 

𝜑(𝐌𝐒𝐡𝐢𝐩 Dis) ℙ (QIdisclosure) 

 

𝑹(𝑪𝒐𝒑𝒚 − 𝒐𝒇) = ∀𝑖8 ∈ 𝑥8, 𝑖9 ∈ 𝑥9| 
𝑖9[1] ≔ 𝑖8[1] ∧ 𝑖9[2] ≔ 𝑖8[2] ∧ (𝑖9[3] ≔ 𝐶𝑜𝑝𝑦𝑜𝑓(𝑖8[3])) ∧  𝑥9′ ≔ 𝑥9 ∪ {(𝑖9[1], 𝑖9[2], 𝑖9[3])}    Rule 5 

 

Transition Comp − cor − atr  calculates the correlated quasi attributes i.e. (𝑖10[2(𝑗)])
∀𝑗∈𝑇(𝑞𝑖)

to reduce the 

dimensionality of the data in the remaining microdata T, which is mapped to the following rule 6. 
 

𝑹(𝑪𝒐𝒎𝒑 − 𝒄𝒐𝒓 − 𝒂𝒕𝒓) = ∀𝑖10 ∈ 𝑥10, 𝑖11 ∈ 𝑥11| 

𝑖11[1] ≔ 𝑖10[1] ∧ (𝑖11[2] ≔ 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑖10[2(𝑗)])
∀𝑗∈𝑇(𝑞𝑖)

) ∧ 𝑖11[3] ≔ 𝑖10[3] ∧ 

 𝑥11′ ≔ 𝑥11 ∪ {(𝑖11[1], 𝑖11[2], 𝑖11[3])}        Rule 6 



 

Transition Idntfy − tpls separates the Ts (i.e. 𝑖15[1]), Tu (i.e. 𝑖17[1]) and Tn (i.e. 𝑖16[1]) to create signatures for each 

accordingly.  

 
𝑹(𝑰𝒅𝒏𝒕𝒇𝒚 − 𝒕𝒑𝒍𝒔) = ∀𝑖12 ∈ 𝑥12, 𝑖14 ∈ 𝑥14, 𝑖15𝑥15, 𝑖16 ∈ 𝑥16, 𝑖17 ∈ 𝑥17| 
𝑖15[1] ≔ 𝑖12[1] ∧ (𝑖12[2] = 𝑖14[1]) → (𝑖15[2] ≔ 𝑖12[2]) ∧ (𝑖12[3] = 𝑖14[2]) → (𝑖15[3] ≔ 𝑖12[3]) 
𝑥15′ ≔ 𝑥15 ∪ {(𝑖15[1], 𝑖15[2], 𝑖15[3])} 
𝑖16[1] ≔ 𝑖12[1] ∧ (𝑖16[2] ≠ (𝑖12[2], ∃ 𝑖12[2] ∉ 𝑖14[1])) ∧ (𝑖16[3] ≠ (𝑖12[3], ∃( 𝑖12[3] ∉ 𝑖14[2]))) 
𝑥16′ ≔ 𝑥16 ∪ {(𝑖16[1], 𝑖16[2], 𝑖16[3])} 

𝑖17[1] ≔ 𝑖12[1] ∧ (𝑖17[2] ≔ (𝑖12[2], ∃ 𝑖12[2] ∈ 𝑖14[1])) ∧ (𝑖17[3] ≠ (𝑖12[3], ∃( 𝑖12[3] ∉ 𝑖14[2]))) 

𝑥17′ ≔ 𝑥17 ∪ {(𝑖17[1], 𝑖17[2], 𝑖17[3])}         Rule 7 
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FIGURE 4 HLPN of  (𝜏, 𝑚)-slicedBucket Privacy model with adversarial attacks invalidation 

 

Transition Crt − sSBkt  mapped in rule 8 create same as previous buckets through 𝑖19[3] ≔ 𝑠𝑠𝑏𝑘𝑡(𝑖18[3]) for Ts, while 

transition Chk − sign check the signatures for Tu tuples in rule 9. The signatures checking are modeled as either 
𝑖20[3] ≔ 𝑖21[3] or 𝑖20[3] ≠ 𝑖21[3]. 
 
𝑹(𝑪𝒓𝒕 − 𝒔𝑺𝑩𝒌𝒕) = ∀𝑖18 ∈ 𝑥18, 𝑖19 ∈ 𝑥19| 
𝑖19[1] ≔ 𝑖18[1] ∧ 𝑖19[2] ≔ 𝑖18[2] ∧ (𝑖18[3] ∈ 𝑖19[3]) → (𝑖19[3] ≔ 𝑠𝑠𝑏𝑘𝑡(𝑖18[3])) ∧ 
𝑥19 ′ ≔ 𝑥19 ∪ {(𝑖19[1], 𝑖19[2], 𝑖19[3])}        Rule 8 

 

𝑹(𝑪𝒉𝒌 − 𝑺𝒊𝒈𝒏) = ∀𝑖20 ∈ 𝑥20, 𝑖21 ∈ 𝑥21, 𝑖22 ∈ 𝑥22| 
𝐶ℎ𝑒𝑐𝑘((𝑖20[3] ≔ 𝑖21[3]) → 𝑖22[1] ≔ 𝑇𝑅𝑈𝐸 ∧ 𝑥22′ ≔ 𝑥22⋃{(𝑖22)} ∨ 



𝐶ℎ𝑒𝑐𝑘((𝑖20[3] ≠ 𝑖21[3]) → 𝑖22[1] ≔ 𝐹𝐴𝐿𝑆𝐸 ∧ 𝑥22′ ≔ 𝑥22⋃{(𝑖22)}     Rule 9 

 

For the TRUE case in rule 9, transition Crt-uSBkt uses signatures (i.e. 𝑖24[4] ≔ 𝑢𝑠𝑏𝑘𝑡(𝑖24[4])) for given Tu tuples 

that are already available in place Upd, otherwise new signatures through transition Crt − unSBkt are created using the 

Asg_Var place. Both types of signatures creations for Tu  tuples are mapped in rules 10 and 11. The addtoUpd 

transition insert the new signatures (i.e. 𝑖24[4] ≔ 𝑢𝑠𝑏𝑘𝑡(𝑖24[4])) into Upd place for future references, as shown in  rule 

12. 
 

𝑹(𝑪𝒓𝒕 − 𝒖𝑺𝑩𝒌𝒕) = ∀𝑖23 ∈ 𝑥23, 𝑖24 ∈ 𝑥24| 
𝑖23[1] = 𝑇𝑅𝑈𝐸 → 𝑖24[4] ≔ 𝑢𝑠𝑏𝑘𝑡(𝑖24[4]) ∧ 𝑖24[1] ≔ 𝑖20[1] ∧ 

𝑥24′ ≔ 𝑥24 ∪ {(𝑖24[1], 𝑖24[4])}         Rule 10 

 

𝑹(𝑪𝒓𝒕 − 𝒖𝒏𝑺𝑩𝒌𝒕) = ∀𝑖25 ∈ 𝑥25, 𝑖26 ∈ 𝑥26, 𝑖27 ∈ 𝑥27| 
𝑖25[1] = 𝐹𝐴𝐿𝑆𝐸 → 𝑖27[3] ≔ 𝑢𝑛𝑆𝐵𝑘𝑡(𝑎𝑠𝑔 − 𝑣𝑎𝑟(𝑖27[3], (𝑖26[1], 𝑖26[2], 𝑖26[3])))∃(𝑖27[3]∩(∀𝑖21[3])=0) ∧ 

𝑥27′ ≔ 𝑥27 ∪ {(𝑖27[3])}          Rule 11 

 

𝑹(𝒂𝒅𝒅𝒕𝒐𝑼𝒑𝒅) = ∀𝑖28 ∈ 𝑥28, 𝑖29 ∈ 𝑥29| 
𝑖29[1] ≔ 𝑖28[1] ∧ 𝑖29[2] ≔ 𝑖28[2] ∧ 𝑖29[3] ≔ 𝑢𝑡𝑈𝑝𝑑(𝑖28[3]) ∧ 𝑥29′ ≔ 𝑥29 ∪ {(𝑖29[1], 𝑖29[2], 𝑖29[3])}  Rule 12 
 

To handle the Tr tuples, transition Crt − rSBkt  creates sliced buckets for re-inserted tuples have same signature (i.e. 

i33[5] ≔ rSBkt(i32[3]) as stored in Del table, otherwise create new signatures such that (Sign ∈ Tr) ∩ (Sign ∈
Upd) = 0, based on assignment phase technique. Transition rtDelete deletes the reinserted tuples from Del table.  
 

𝑹(𝒓𝒕𝑫𝒆𝒍𝒆𝒕𝒆) = ∀𝑖30 ∈ 𝑥30, 𝑖31 ∈ 𝑥31| 
𝑖31[1] ≔ 𝑑𝑒𝑙𝑟𝑇𝑝𝑙(𝑖30[1]) ∧ 𝑖31[2] ≔ 𝑖30[2] ∧ 𝑖31[3] ≔ 𝑖30[3] 
𝑥31′ ≔ 𝑥31 ∪ {(𝑖31[1], 𝑖31[2], 𝑖31[3])}        Rule 13 

 

𝑹(𝑪𝒓𝒕 − 𝒓𝑺𝑩𝒌𝒕) = ∀𝑖32 ∈ 𝑥32, 𝑖33 ∈ 𝑥33, 𝑖34 ∈ 𝑥34, 𝑖35 ∈ 𝑥35, 𝑖36 ∈ 𝑥36| 
𝑖33[1] ≔ 𝑖32[1] ∧ 𝑖33[2] ≔ 𝑖32[2] ∧ (𝑖33[5] ≔ 𝑟𝑆𝐵𝑘𝑡(𝑖32[3]) ∧ 𝑥33′ ≔ 𝑥33 ∪ {(𝑖33[1], 𝑖32[2], 𝑖33[5])} ∨ 

𝑖36[1] ≔ 𝑖32[1] ∧ 𝑖36[2] ≔ 𝑖32[2] ∧ (𝑖36[3] ≔ 𝑟𝑛𝑆𝐵𝑘𝑡(𝑎𝑠𝑔 − 𝑣𝑎𝑟(𝑖36[3], 𝑖35[1], 𝑖35[2], 𝑖35[3])))∃(𝑖32[3]∩(∀𝑖34[3])=0) ∧ 

𝑥36′ ≔ 𝑥36 ∪ {(𝑖36[1], 𝑖36[2], 𝑖36[3])}         Rule 14 

 

All buckets created in rules 8,10,11 are14 are updated through transition CombSBkts by taking union of all those 

buckets (where Bkti ∩ Bktj = 0, and i ≠ j ) in order to have signatures for complete dataset at one place. Transition 

Balancing adds the records from Cach table or from Tn records to fill the required empty gap in the created sliced 

buckets. The transitions CombSBkts and Balancing are mapped to the following rules 15 and 16. 

 
𝑹(𝑪𝒐𝒎𝒃𝑺𝑩𝒌𝒕𝒔) = ∀𝑖37 ∈ 𝑥37, 𝑖38 ∈ 𝑥38, 𝑖39 ∈ 𝑥39, 𝑖40 ∈ 𝑥40|   
𝑖40[1] ≔ 𝑢𝑛𝑖𝑜𝑛(𝑖37[1], 𝑖38[1], 𝑖39[1]) ∧ 𝑖40[2] ≔ 𝑢𝑛𝑖𝑜𝑛(𝑖37[2], 𝑖38[2], 𝑖39[2]) ∧ 
𝑖40[3] ≔  𝑢𝑛𝑖𝑜𝑛(𝑖37[3], 𝑖37[4], 𝑖37[5], 𝑖38[3], 𝑖39[3]) ∧ 𝑖40[4] ≔ 𝑢𝑛𝑖𝑜𝑛(𝑖37[6], 𝑖38[4], 𝑖39[4]) ∧ 
𝑥40′ ≔ 𝑥40 ∪ {(𝑖40[1], 𝑖40[2], 𝑖40[3], 𝑖40[4])}         Rule 15 

 

𝑹(𝑩𝒂𝒍𝒂𝒏𝒄𝒊𝒏𝒈) = ∀𝑖41 ∈ 𝑥41, 𝑖42 ∈ 𝑥42, 𝑖43 ∈ 𝑥43, 𝑖44 ∈ 𝑥44| 

𝑖44[1] ≔ (𝑖41[1] + (𝑖42[1] ∨ 𝑖43[1])) ∧ (𝑖44[2] ≔  𝑖41[2] + (𝑖42[2] ∨ 𝑖43[2])) ∧ 

(𝑖44[3] ≔ 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 ( 𝑖41[3]𝑖∀𝑖41[3]∈𝑖 + (𝑖42[3] ∨ 𝑖43[3]))) ∧ 𝑥44′ ≔ 𝑥44 ∪ {(𝑖44[1], 𝑖44[2], 𝑖44[3])}      Rule 16 

 

Algorithm 6 is formally depicted in transitions Chk − asgEq and transition Crt − asgBkts which checks the assignment 

equation to create buckets for the remaining Tn tuples (i.e. ∀ Tn ≠ 0). Transition Partition separates the multiple QI-

groups (i.e. i52[3] ≔ part(i51[3])∃s≥m)) that exists in a single bucket and keep them in an individual sliced bucket that 

have minimum QI distance between them. The buckets with respect to QI columns are sorted in rule 20.  

 
𝑹(𝑪𝒉𝒌 − 𝒂𝒔𝒈𝑬𝒒) = ∀𝑖46 ∈ 𝑥46, 𝑖47 ∈ 𝑥47, 𝑖48 ∈ 𝑥48| 

𝑖48[1] ≔ 𝑖46[1] ∧ 𝑖48[2] ≔ 𝑖46[2] ∧ (|𝑖46[3]| ≠ 0) → {𝑖48[3] ≔ 𝑎𝑠𝑔 − 𝑣𝑎𝑟(𝑖46[3]𝑖∀𝑖46[3]∈𝑖, 𝑖47[1], 𝑖47[2], 𝑖47[3])} 

𝑥48′ ≔ 𝑥48 ∪ {(𝑖48[1], 𝑖48[2], 𝑖48[3])}        Rule 17 
 
𝑹(𝑪𝒓𝒕 − 𝒂𝒔𝒈𝑩𝒌𝒕𝒔) = ∀𝑖49 ∈ 𝑥49, 𝑖50 ∈ 𝑥50| 
𝑖50[1] ≔ 𝑖49[1] ∧ 𝑖50[2] ≔ 𝑖49[2] ∧ 𝑖50[3] ≔ 𝑎𝑠𝑔𝐵𝑘𝑡𝑠(50[3] ∪ 𝑖49[3])∃𝑖49[3]𝑥∈49,𝑖50[3]𝑦∈50|𝑥≠𝑦 ∧ 𝑖50[4] ≔ 𝑖49[4]  



𝑥50′ ≔ 𝑥50 ∪ {(𝑖50[1], 𝑖50[2], 𝑖50[3], 𝑖50[4])}        Rule 18 
 
𝑹(𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏) = ∀𝑖51 ∈ 𝑥51, 𝑖52 ∈ 𝑥52| 
𝑖52[1] ≔ 𝑖51[1] ∧ 𝑖52[2] ≔ 𝑖51[2] ∧ 𝑖52[3] ≔ 𝑝𝑎𝑟𝑡(𝑖51[3])∃s≥m) ∧ 𝑖52[4]∀𝑖52[4]∃SingleSign ≔ 𝑖51[4] 

𝑥52′ ≔ 𝑥52 ∪ {(𝑖52[1], 𝑖52[2], 𝑖52[3], 𝑖52[4])}        Rule 19 

 

𝑹(𝑩𝒌𝒕𝒔 − 𝑺𝒐𝒓𝒕) = ∀𝑖53 ∈ 𝑥53, 𝑖54 ∈ 𝑥54| 
𝑖54[1] ≔ 𝑖53[1] ∧ 𝑖54[2] ≔ 𝑠𝑜𝑟𝑡 − 𝑎𝑠𝑐(𝑖53[2]) ∧ 𝑖54[3] ≔ 𝑖53[3] ∧ 𝑖54[4] ≔ 𝑖53[4] 
𝑥54′ ≔ 𝑥54 ∪ {(𝑖54[1], 𝑖54[2], 𝑖54[3], 𝑖54[4])}        Rule 20 
 

Transition Validate_kAnony is used to k-anonymize the QI columns for each cell. And the k-anonymous cells along 

with the sliced buckets are randomly permuted to prevent against membership attack. This final transition performs 

the last step to transform the raw data into the anonymized SBUCs form and is ready to publish. Rules 21 depicts the 

procedure as follows. 
 
𝑹(𝑽𝒂𝒍𝒊𝒅𝒂𝒕𝒆_𝒌𝑨𝒏𝒐𝒏𝒚) = ∀𝑖55 ∈ 𝑥55, 𝑖56 ∈ 𝑥56| 
𝑖56[1] ≔ 𝑐𝑒𝑙𝑙𝐺𝑒𝑛(𝑖55[1], 𝑖55[2]) ∧ 𝑖56[2] ≔ 𝑟𝑎𝑛𝑑𝑃𝑒𝑟𝑚𝑢𝑡𝑒(𝑖55[3], 𝑖55[4]) 
𝑥56′ ≔ 𝑥56 ∪ {(𝑖56[1], 𝑖56[2])}         Rule 21 
 

The adversary combines the published releases, UBK and external available information to disclose the SA values 

and the corresponding user identifications in a specific release. The transitions Collusion − Attack  prevent the 

intruder from disclosing an individual record signature i.e.  
∀(SignPRT ∪ Signadv) ≠ Signdisclosure and hence the intruder gets the ∅ result. The function randPermute() in rule 

21 prevents the membership attack (i.e. QIkAnony ∪ QIadv ≠ QIdisclosure ) as depicted in transition Membership −

Attack.   

Therefore, in each SBUC the proposed (𝜏, 𝑚)-slicedBucket keeps a consistent signature against each record or 

updated signature with condition: Sig(STi(t))  ∩  Sig (STj(t)) = 0, ∧  𝑖 ≠ 𝑗  and fulfilment of assignment equation to 

achieve m-unique signatures. Attraction for slicing to prevent membership disclosure is undoubtful. For example, if 

an adversary can get values of AQI of an individual in ACQI in a specific 3-anonymous SBUC then it is 33% chance 

that he can trace exact patient. In case if PID is correctly traced even then it is hard to identify its sensitive value 

because of the signature consistency in each release. The next section demonstrates the experimental proof of the 

proposed privacy model. 

 
𝑹(𝑪𝒐𝒍𝒍𝒖𝒔𝒊𝒐𝒏 − 𝑨𝒕𝒕𝒂𝒄𝒌) = ∀𝑖57 ∈ 𝑥57, 𝑖59 ∈ 𝑥59, 𝑖60 ∈ 𝑥60| 
𝑆𝑖𝑔𝑛𝐷𝑖𝑠(𝑖57[2]) → (𝑖57[2] ∪ 𝑖59[2]) ≠ 𝑖60[2] ∨ 𝑆𝑖𝑔𝑛𝐷𝑖𝑠(𝑖57[2] ∪ 𝑖59[2]) = ∅      Rule 22 

 
𝑹(𝑴𝒆𝒎𝒃𝒆𝒓𝒔𝒉𝒊𝒑 − 𝑨𝒕𝒕𝒂𝒄𝒌) = ∀𝑖61 ∈ 𝑥61, 𝑖62 ∈ 𝑥62, 𝑖63 ∈ 𝑥63| 
𝑀𝑆ℎ𝑖𝑝𝐷𝑖𝑠(𝑖61[1]) → (𝑖61[1] ∪ 𝑖62[1]) ≠ 𝑖63[1] ∨ 𝑀𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑐(𝑖61[1] ∪ 𝑖62[1]) = ∅    Rule 23 

 
6 Experiment and analysis 

This section validates the proposed (𝜏, 𝑚)-slicedBucket privacy model and evaluates the experimental results in 

comparison with m-invariance, 𝜏-safety and 𝜏-safe (l, k)-diversity algorithms. Various quality measures are available 

to test the effectiveness of the privacy models. In this paper, we use the normalized certainty penalty (NCP) [29], 

Kullback-Leibler (KL)-Divergence [11], query accuracy [11-12], number of counterfeits used and algorithm execution 

time analysis.  

The proposed algorithm has been implemented in Python 3.7, on a machine having Intel Core i5 2.39 GHz processor 

with 4GB RAM, installed on Windows 10 operating system. Though, we did not have code for m-invariance, 𝜏-safety 

and 𝜏-safe (l, k)-diversity, we implemented these algorithms keeping their values as close to the original as possible. 

We have used the publicly available real dataset Adults; taken from U.C. Irvine Machine Learning Repository, 

https://archive.ics.uci.edu/ml/datasets. From the Adult dataset, we have randomly chosen 60,000 tuples and four 

attributes to perform experiments. Among the four attributes: age, gender, and zip code have been selected as AQIs 

and occupation as AS. After first release, for external updates in each subsequent release almost 3,500 tuples have 

randomly been deleted and 4,000 tuples have been inserted from the remaining tuples. For internal updates, 1,000 

tuples have been updated from previous release with respect to AS and 1,000 tuples have been re-inserted from the 

Del table. In this way, 20 times Adults dataset has been produced and has been anonymized by the implemented 

algorithm. 



      

6.1 Anonymization Quality 

This sub-section examines the quality of the anonymized releases. NCP [12], [29] and KL Divergence [11] are the 

statistical metrics that measure the utility loss caused by anonymization.    

 

(i) Normalized Certainty Penalty (NCP) 

The NCP used in [12], [29], is a well-known measure of utility loss for the anonymized releases using the QI attributes 

in the dataset. The utility loss for a single QI value, for a record t, and for the complete anonymized release T∗ are 

given in Equations (4), (5) and (6) respectively. 

 

NCPQIi
(t) =

zi−yi

|QIi|
     (4) 

 

NCP(t) = ∑ wi
q
i=1 . NCPQi

(t)   (5) 
 

NCP(T∗) = ∑ NCP(t)𝑡∈𝑇∗     (6) 

 

where yi and zi are the generalized lower and upper attribute values in a domain and |QIi| is the domain of attribute 

QIi, q are the total AQIs and wi are weights of attributes. 

Figure 5 depicts utility measurement for the anonymized releases using NCP. The algorithm was tested under different 

parameters i.e. release time and m value. Figure 5(a) compares m-invariance, 𝜏-safety, 𝜏-safe (l, k)-diversity and the 

proposed (𝜏, m)-slicedBucket privacy algorithms. The proposed algorithm is tested to anonymize the Adults dataset 

for 20 release times having fixed m=6 during each release. In Figure 5(a) the y-axis is the percentage value from Eq. 

6 during the 20 releases on x-axis. The higher NCP% value shows the highest utility loss, while (𝜏, m)-slicedBucket 

has the lowest information loss. m-invariance algorithm performs worst because it cannot control the generalization 

while 𝜏-safety divides the records into their nearest ECs. In 𝜏-safe (𝑙, 𝑘)-diversity, although there is less information 

loss but still generalization exists in each EC and has certain amount of utility loss. The (𝜏, 𝑚)-slicedBucket privacy 

model performs comparatively good because of slicing that has no generalization or cell generalization approach. It 

also stores sorted records into their nearest slicedBuckets. The reason for almost straight graph for all the four 

approaches is because of the same generalization, bucketization and cell generalization during all the 20 releases in 

their respective algorithms.    

Figure 5(b) compares 𝜏-safe (l, k)-diversity and (𝜏, m)-slicedBucket algorithms to calculate NCP% for varying values 

of m, i.e. m=4, m=6 and m=8 during the 20 anonymized releases. The comparative graphs produced by both approaches 

have been encircled. As time evolves, closer records are achieved which results in small generalization. This reduces 

the information loss gradually. Though the loss is acceptable but for high parameter values i.e. l, k and m, more 

information loss and vice versa because of high generalization. The (𝜏, m)-slicedBucket outperforms the 𝜏-safe (l, k)-

diversity for each parameter during all the releases because of the negligible cell generalization in each sliced bucket 

and reduced dimensionality during slicing. 

 

 
(a) 

 
(b) 

FIGURE 5 Utility measurements, (a) Inform. loss for fixed m, (b) Inform. loss of (l,k) and (𝜏, m) for varying m 
 



(ii) KL-Divergence 

Kullback-Leibler (KL)-Divergence [11] is also used to measure the utility loss when considering the overall 

distribution of QI attribute values in microdata. KL-Divergence is a logarithmic ratio of two probabilities. According 

to KL-Divergence, consider P1(t) and P2(t) as the probability distributions of a record in the original microdata and 

anonymized microdata, respectively. The KL-divergence for both tables is calculated in Equation (7) as follows. 

 

KL(P1, P2) = ∑ P1t (t)log
P1(t)

P2(t)
    (7) 

 

 
 

      FIGURE 6 Utility measurements through KL-Divergence 
 

Figure 6 depicts the utility through KL-Divergence. The algorithm executed for 20 releases having m=10 in size. 

During initial releases, the information loss is less while as time evolves the high graph shows more information loss. 

The three approaches i.e. m-invariance, 𝜏-safety, (l, k)-diversity, adds the counterfeits to achieve the record signature 

in an EC. Adding the counterfeits repeatedly in each release reduces the truthfulness of data because of fake tuples. 

The delete list used by 𝜏-safety improves its performance as compared to m-invariance and the same Del approach is 

used by 𝜏-safe (l, k)-diversity also, which keeps it closer to 𝜏-safety. The angelization [28] approach improves the 𝜏-

safe (l, k)-diversity utility from the 𝜏-safety. For (𝜏, m)-slicedBucket privacy model no information loss with respect 

to counterfeit. Because of Cach table the (𝜏, m)-slicedBucket does not use any counterfeit tuples which enhances its 

utility a lot as discussed in the algorithm. For initial releases almost no loss while for higher releases the small increase 

in graph is because of the cell generalization used and high range values in generalization. 

 

6.2 Query Accuracy 

Query accuracy [11-12] evaluates utility of the anonymized release by triggering aggregate queries. The anonymized 

release T∗ from original microdata T having q as maximum AQI’s i.e. A1
QI

, A2
QI

A3
QI

, … , Aq
QI

 where D(Ai
QI

) is the domain 

of the ith AQI. Then the following aggregate query is used to calculate query accuracy. 
 

Query =  select count(∗) from R∗ where A1
QI

∈ D(A1
QI

) AND  .  .  .  AND A𝑞
QI

 ∈ D(A𝑞
QI

) 

 



 
(a) 

 

 
(b) 

 

 
(c) 

FIGURE 7 Qeury Error (a) Variable m size (b) Updating Release time (c) Change in Selectivity 

 

Query dimensionality and query selectivity (number of records to be selected), are the two predicates in above query 

in which dimensionality is dependent on selectivity. If the number of tuples obtained after applying query are |TQuery| 

on T where |T| are the total number of records in the dataset, the query selectivity is 𝜃 =
|TQuery|

|T|
.  The query error in 

Equation (8) is then a difference between the anonymized and original dataset. 

QueryError =
|Count(anonymized)−Count(original)|

Count(original)
    (8) 

where count(anonymized) is the output from T∗ and count(original) is the result from T using the aggregate operator 

COUNT. Queries with higher selectivity (more predicates) will have higher error rate. The query error was checked 

under different parameters i.e. varying m, varying time and varying selectivity. We executed 1,000 random queries 

for m-invariance, 𝜏-safety, 𝜏-safe (l, k)-diversity and for our proposed (𝜏, m)-slicedBucket privacy models. On average, 

the query errors for different values of m, and for a specific release e.g. 10th release, can be seen in Figure 7(a) at 10% 

selectivity. High value of m means high generalization of AQI ’s. The proposed ( 𝜏 , m)-slicedBucket uses cell 

generalization [14-15] while the remaining three approaches uses the same classical generalization that leads to their 

low utility comparatively. In Figure 7(b), the query error for a specific value of m=8 over different releases, 𝜏-safety 

performs well as compared to m-invariance. The smooth increase in 𝜏-safety is because of the new records insertions 

on minimum distance basis which reduces the interval of AQI ’s over different releases. In the proposed (𝜏, 𝑚)-

slicedBucket model because of the reduced dimensionality in AQIs  the query error is further reduced with the same 

minimum distance AQI placement in an EC. Figure 7(c) depicts query error with respect to varying selectivity. High 

selective queries have more predicates which results in a smaller number of records. So, query error increases for more 

selective queries and high selectivity results in decrease query error. For release 10th and m=8, (𝜏, 𝑚)-slicedBucket 



has the lowest query error as compared to m-invariance, 𝜏-safety, and 𝜏-safe (l,k)-diversity, even for low selectivity 

value. 

 

6.3 Counterfeit avoidance  

Number of counterfeits added to the published anonymized release is a key factor in decreasing the truthfulness of QI 

values. As discussed in Section 1.1 (iii) and Section 5.3, m-invariance 𝜏 -safety, and (l,k)-diversity are using 

counterfeits in all their releases while the proposed ( 𝜏, 𝑚) -slicedBucket Cach  table helps to perform dynamic 

publishing without using any counterfeit tuple. Figure 8 depicts a zero-counterfeit tuple for the proposed (𝜏,m)-

slicedBucket model while the remaining approaches randomly uses counterfeits. Counterfeit even creates more serious 

problem when the number of deletions is higher than the inserted tuples. This means that almost more than half of the 

data in a published release will be having no truthful QI values. Therefore, with high deletions in m-invariance, 𝜏-

safety, and 𝜏-safe (l, k)-diversity will be having more utility loss and fake publication.  

 

6.4 Execution time analysis 

The computational efficiency of a model or an algorithm is expressed in terms of its total execution time. The algorithm 

executes for twenty releases with varying m in the range from 2 to 10. The average algorithm execution time obtained 

for different values of m is shown in Figure 9 that compares m-invariance, 𝜏-safety, 𝜏-safe (l, k)-diversity and (𝜏,m)-

slicedBucket algorithms. Quicker buckets partitioning makes the 𝜏-safety better than m-invariance in execution but 

high value of m responds in a slight increase in execution. The average execution time for 𝜏-safe (l, k)-diversity has 

very small increase even if m increases. This is because 𝜏-safe (l, k)-diversity only performs sorting and generalization. 

Although managing high size of Del table is time consuming for 𝜏-safe (l,k)-diversity but still takes less time in 

execution as compared to (𝜏, 𝑚)-slicedBucket. The proposed (𝜏, 𝑚)-slicedBucket performs well as compared to m-

invariance and 𝜏-safety but has high execution time in comparison to 𝜏-safe (l, k)-diversity. 

 

 
 

FIGURE 8 Counterfeit used 

 
 

FIGURE 9 Algorithm Execution Time 

 

Although cell generalization in (𝜏, 𝑚)-slicedBucket takes small amount of time however handling the Cach and Upd 

tables to avoid the counterfeits are the factors for extra time consumption.. The graph has a slight increase in execution 

time for the proposed work as m increases because more records needs to anonymize in an EC while at the same time 

contacting Cach and Upd tables needs to be done.    

 

7 Conclusion 

Privacy preserving data publishing has become a significant research area since the last decade. In this paper, a real-

world challenging scenario for implementing privacy in sequential data publishing has been performed. The proposed 

(𝜏, 𝑚)-slicedBucket privacy model is a sequential anonymization model over time, which considers all possible 

operations i.e. insert, update, delete, on given dataset. The proposed algorithm follows certain steps to implement 

privacy and utility. For implementing privacy; attributes correlation, classification, balancing and assignments were 



performed, while for utility enhancement; partition and cell generalizations are used. The Cach table creation helps to 

publish real anonymized records without using any counterfeit tuples. The counterpart privacy models i.e. m-

invariance, 𝜏-safety, 𝜏-safe (l,k)-diversity were found vulnerable to our identified attack; collusion attack, and also 

have the counterfeit usage limitations. The formal modeling for 𝜏-safe (l,k)-diversity identifies the collusion attack 

vulnerability which has been mitigated in the proposed privacy model formal modeling. The proposed (𝜏, 𝑚)-

slicedBucket algorithm creates consistent signatures for a specific record respondent during all its releases. The 

experimental results proved the effectiveness for the proposed privacy model.   

For future work, we consider the sequential dynamic data publication with progressive internal updates instead of 

arbitrary updates. Three other research directions can be (i) sequential dynamic data publication with multiple sensitive 

attributes (MSA) [49], (ii) sequential dynamic data publication with individual having more than one records i.e. 1:M 

microdata [29], and the more challenging work is to propose a solution for (iii) 1:M-MSA with sequential dynamic 

data publishing. 
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