9 research outputs found

    A biomimetic redox flow battery based on flavin mononucleotide

    No full text
    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures

    Laboratory testing and phylogenetic analysis during a mumps outbreak in Ontario, Canada

    No full text
    Abstract Background In September 2009, a mumps outbreak originated in New York and spread to Northeastern USA and Canada. This study compares the performance of different diagnostic testing methods used in Ontario and describes molecular characteristics of the outbreak strain. Methods Between September 2009 and February 2010, specimens from suspect cases were submitted to Public Health Ontario Laboratory for mumps serology, culture and/or real-time reverse-transcriptase PCR (rRT-PCR) testing. rRT-PCR-positive specimens underwent genotyping at Canada’s National Microbiology Laboratory. Whole genome sequencing was performed on four outbreak and three sporadic viral culture isolates. Results Six hundred ninety-eight patients had IgM serology testing, of which 255 (37%) had culture and rRT-PCR. Among those, 35/698 (5%) were IgM positive, 39/255 (15%) culture positive and 47/255 (18%) rRT-PCR-positive. Buccal swabs had the highest rRT-PCR positivity (21%). The outbreak isolates were identical to that in the New York outbreak occurring at the same time. Nucleotide and amino acid identity with the Jeryl Lynn vaccine strain ranged from 85.0-94.5% and 82.4-99.4%, depending on the gene and coding sequences. Homology of the HN protein, the main immunogenic mumps virus protein, was found to be 94.5 and 95.3%, when compared to Jeryl Lynn vaccine major and minor components, respectively. Conclusions Despite higher sensitivity than serology, rRT-PCR testing is underutilized. Further work is needed to better understand the suboptimal match of the HN gene between the outbreak strain and the Jeryl Lynn vaccine strain

    Measurements of the semileptonic decays (B)over-bar -> Dl(nu)over-bar and (B)over-bar -> D*l(nu)over-bar using a global fit to DXl(nu)over-bar final states

    No full text
    Semileptonic (B) over bar decays to DXl (nu) over bar (l = e or mu) are selected by reconstructing D(0)l and D(+)l combinations from a sample of 230 x 10(6) Y(4S) --> B (B) over bar decays recorded with the BABAR detector at the PEP-II e(+)e(-) collider at SLAC. A global fit to these samples in a three-dimensional space of kinematic variables is used to determine the branching fractions B(B- --> D(0)l (nu) over bar = (2.34 +/- 0.03 +/- 0.13)% and B(B- --> D*(0)l (nu) over bar) = (5.40 +/- 0.02 +/- 0.21)% where the errors are statistical and systematic, respectively. The fit also determines form-factor parameters in a parametrization based on heavy quark effective theory, resulting in rho(2)(D) = 1.20 +/- 0.04 +/- 0.07 for (B) over bar --> Dl (nu) over bar and rho(2)(D*) = 1.22 +/- 0.02 +/- 0.07 for (B) over bar --> D*(0)l (nu) over bar. These values are used to obtain the product of the Cabibbo-Kobayashi-Maskawa matrix element |V-cb| times the form factor at the zero recoil point for both (B) over bar --> Dl (nu) over bar decays, G(1)|V-cb| = (43.1 +/- 0.8 +/- 2.3) x 10(-3), and for (B) over bar --> D*l (nu) over bar decays, F(1)|V-cb| = (35.9) +/- 0.2 +/- 1.2) x 10(-3)
    corecore