230 research outputs found

    Understanding social inequalities in children being bullied: UK Millennium Cohort Study findings

    Get PDF
    BACKGROUND: Children living in disadvantaged socio-economic circumstances (SEC) are more commonly victims of bullying, but pathways leading to social inequalities in being bullied are unclear. We assess how early life risk factors might mediate the increased risk of being bullied at age seven for children living in disadvantaged circumstances. MATERIAL AND METHODS: Using data from 5,857 children in the UK Millennium Cohort Study (MCS) we calculate risk ratios (RR) for being bullied at age seven (child-reported), by household income quintile. Socially patterned risk factors for being bullied relating to social networks, family relationships and child characteristics from birth to age five were adjusted for to assess if they mediated any association between SEC and being bullied. RESULTS: 48.6% of children reported having been bullied. Children living in the lowest income households were at 20% greater risk of being bullied compared to those from the highest (RR1.20, 95%CI 1.06,1.36). Controlling for social networks, family relationships and child characteristics attenuated the increased risk for children in low income households to aRR 1.19 (95%CI 1.05, 1.35), aRR 1.16 (95%CI 1.02,1.32) and aRR 1.13 (95%CI 1.00,1.28) respectively. Our final model adjusted for risk factors across all domains attenuated the RR by 45% (aRR 1.11,95%CI 0.97,1.26). CONCLUSIONS: About half of children reported being bullied by age seven with a clear social gradient. The excess risk in children growing up in disadvantaged circumstances was partially explained by differences in their early years relating to their social network, family relationships and the child’s own abilities and behaviours. Policies to reduce inequalities in these risk factors may also reduce inequalities in the risk of being bullied in childhood

    Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean

    Get PDF
    The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    Get PDF
    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components

    Disturbance and diversity at two spatial scales

    Get PDF
    The spatial scale of disturbance is a factor potentially influencing the relationship between disturbance and diversity. There has been discussion on whether disturbances that affect local communities and create a mosaic of patches in different successional stages have the same effect on diversity as regional disturbances that affect the whole landscape. In a microcosm experiment with metacommunities of aquatic protists, we compared the effect of local and regional disturbances on the disturbance–diversity relationship. Local disturbances destroyed entire local communities of the metacommunity and required reimmigration from neighboring communities, while regional disturbances affected the whole metacommunity but left part of each local community intact. Both disturbance types led to a negative relationship between disturbance intensity and Shannon diversity. With strong local disturbance, this decrease in diversity was due to species loss, while strong regional disturbance had no effect on species richness but reduced the evenness of the community. Growth rate appeared to be the most important trait for survival after strong local disturbance and dominance after strong regional disturbance. The pattern of the disturbance–diversity relationship was similar for both local and regional diversity. Although local disturbances at least temporally increased beta diversity by creating a mosaic of differently disturbed patches, this high dissimilarity did not result in regional diversity being increased relative to local diversity. The disturbance–diversity relationship was negative for both scales of diversity. The flat competitive hierarchy and absence of a trade-off between competition and colonization ability are a likely explanation for this pattern

    Merozoite release from Plasmodium falciparum-infected erythrocytes involves the transfer of DiIC16 from infected cell membrane to Maurer’s clefts

    Get PDF
    Merozoite release from infected erythrocytes is a complex process, which is still not fully understood. Such process was characterised at ultra-structural level in this work by labelling erythrocyte membrane with a fluorescent lipid probe and subsequent photo-conversion into an electron-dense precipitate. A lipophilic DiIC16 probe was inserted into the infected erythrocyte surface and the transport of this phospholipid analogue through the erythrocyte membrane was followed up during 48 h of the asexual erythrocyte cycle. The lipid probe was transferred from infected erythrocyte membranes to Maurer’s clefts during merozoite release, thereby indicating that these membranes remained inside host cells after parasite release. Fluorescent structures were never observed inside infected erythrocytes preceding merozoite exit and merozoites released from infected erythrocyte were not fluorescent. However, specific precipitated material was localised bordering the parasitophorous vacuole membrane and tubovesicular membranes when labelled non-infected erythrocytes were invaded by merozoites. It was revealed that lipids were interchangeable from one membrane to another, passing from infected erythrocyte membrane to Maurer’s clefts inside the erythrocyte ghost, even after merozoite release. Maurer’s clefts became photo-converted following merozoite release, suggesting that these structures were in close contact with infected erythrocyte membrane during merozoite exit and possibly played some role in malarial parasite exit from the host cell

    Identifying physiological measures of lifetime welfare status in pigs: exploring the usefulness of haptoglobin, C-reactive protein and hair cortisol sampled at the time of slaughter

    Get PDF
    Background: Physiological measures indicative of the welfare status of animals during rearing could form part of an abattoir-based animal health and welfare assessment tool. A total of 66 pigs were used in this study, the aim of which was to assess how serum concentrations of haptoglobin (Hp) and C-reactive protein (CRP) (assessed in 51 pigs), and hair concentrations of cortisol (assessed in 65 pigs), measured at or close to slaughter, reflected welfare-related indicators recorded from the animal during its lifetime. These indicators were recorded at intervals between 7 and 21 weeks of age and included assigning scores for levels of tail and skin lesions, recording the presence or absence of certain health issues, and conducting qualitative behavioural assessments (QBA). Results: Pigs recorded as having tail lesions during their lifetime had higher hair cortisol levels than those with no tail lesions (tail lesions: 47.87 ± 3.34 pg/mg, no tail lesions: 42.20 ± 3.29 pg/mg, P = 0.023), and pigs recorded as having moderate or severe tail lesions had higher Hp levels than those with no or mild tail lesions (moderate/severe: 1.711 mg/ml ± 0.74, none/mild: 0.731 mg/ml ±0.10, P = 0.010). Pigs recorded as being lame during their lifetime tended to have higher hair cortisol levels than non-lame pigs (lame: 52.72 pg/mg ± 3.83, not lame: 43.07 pg/mg ± 2.69, P = 0.062). QBA scores were not associated with any of the physiological measures (P > 0.05). Receiver Operator Curve (ROC) analysis was also carried out to get a better understanding of the usefulness of the physiological measures in discriminating animals that had had welfare-related issues recorded during their lifetime from those that had not. Hair cortisol was determined as having ‘moderate’ accuracy in discriminating pigs that were tail bitten on-farm from unbitten pigs (AUC: 0.748) while Hp and CRP were determined to have no meaningful discriminatory ability (AUC < 0.600). Conclusion: This research should be repeated on a larger scale, but the results suggest that hair cortisol measured at slaughter could provide insight into the welfare status of pigs during their lifetime. Hp may be a useful indicator of tail lesions in pigs. However, further research utilising a greater proportion of severely bitten pigs is required before conclusions can be drawn

    Programmable disorder in random DNA tilings

    Get PDF
    Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures

    An expanded global inventory of allelic variation in the most extremely polymorphic region of Plasmodium falciparum merozoite surface protein 1 provided by short read sequence data.

    Get PDF
    BACKGROUND: Within Plasmodium falciparum merozoite surface protein 1 (MSP1), the N-terminal block 2 region is a highly polymorphic target of naturally acquired antibody responses. The antigenic diversity is determined by complex repeat sequences as well as non-repeat sequences, grouping into three major allelic types that appear to be maintained within populations by natural selection. Within these major types, many distinct allelic sequences have been described in different studies, but the extent and significance of the diversity remains unresolved. METHODS: To survey the diversity more extensively, block 2 allelic sequences in the msp1 gene were characterized in 2400 P. falciparum infection isolates with whole genome short read sequence data available from the Pf3K project, and compared with the data from previous studies. RESULTS: Mapping the short read sequence data in the 2400 isolates to a reference library of msp1 block 2 allelic sequences yielded 3815 allele scores at the level of major allelic family types, with 46% of isolates containing two or more of these major types. Overall frequencies were similar to those previously reported in other samples with different methods, the K1-like allelic type being most common in Africa, MAD20-like most common in Southeast Asia, and RO33-like being the third most abundant type in each continent. The rare MR type, formed by recombination between MAD20-like and RO33-like alleles, was only seen in Africa and very rarely in the Indian subcontinent but not in Southeast Asia. A combination of mapped short read assembly approaches enabled 1522 complete msp1 block 2 sequences to be determined, among which there were 363 different allele sequences, of which 246 have not been described previously. In these data, the K1-like msp1 block 2 alleles are most diverse and encode 225 distinct amino acid sequences, compared with 123 different MAD20-like, 9 RO33-like and 6 MR type sequences. Within each of the major types, the different allelic sequences show highly skewed geographical distributions, with most of the more common sequences being detected in either Africa or Asia, but not in both. CONCLUSIONS: Allelic sequences of this extremely polymorphic locus have been derived from whole genome short read sequence data by mapping to a reference library followed by assembly of mapped reads. The catalogue of sequence variation has been greatly expanded, so that there are now more than 500 different msp1 block 2 allelic sequences described. This provides an extensive reference for molecular epidemiological genotyping and sequencing studies, and potentially for design of a multi-allelic vaccine

    RNA localization in neurite morphogenesis and synaptic regulation: current evidence and novel approaches

    Get PDF
    It is now generally accepted that RNA localization in the central nervous system conveys important roles both during development and in the adult brain. Of special interest is protein synthesis located at the synapse, as this potentially confers selective synaptic modification and has been implicated in the establishment of memories. However, the underlying molecular events are largely unknown. In this review, we will first discuss novel findings that highlight the role of RNA localization in neurons. We will focus on the role of RNA localization in neurotrophin signaling, axon outgrowth, dendrite and dendritic spine morphogenesis as well as in synaptic plasticity. Second, we will briefly present recent work on the role of microRNAs in translational control in dendrites and its implications for learning and memory. Finally, we discuss recent approaches to visualize RNAs in living cells and their employment for studying RNA trafficking in neurons
    corecore