98 research outputs found
No behavioural response to kin competition in a lekking species
The processes of kin selection and competition may occur simultaneously if limited individual dispersal i.e. population viscosity, is the only cause of the interactions between kin. Therefore, the net indirect benefits of a specific behaviour may largely depend on the existence of mechanisms dampening the fitness costs of competing with kin. In lekking species, males may increase the mating success of their close relatives (and hence gain indirect fitness benefits) because female prefer large leks. At the same time, kin selection may also lead to the evolution of mechanisms that dampen the costs of kin competition. As this mechanism has largely been ignored to date, we used detailed behavioural and genetic data collected in the black grouse Lyrurus tetrix to test whether males mitigate the costs of kin competition through the modulation of their fighting behaviours according to kinship and the avoidance of close relatives when establishing a lek territory. We found that neighbouring males’ fighting behaviour was unrelated to kinship and males did not avoid settling down with close relatives on leks. As males’ current and future mating success are strongly related to their behaviour on the lek (including fighting behaviour and territory position), the costs of kin competition may be negligible relative to the direct benefits of successful male-male contests. As we previously showed that the indirect fitness benefits of group membership were very limited in this black grouse population, these behavioural data support the idea that direct fitness benefits gained by successful male-male encounters likely outbalance any indirect fitness benefits
Vocal Learning and Auditory-Vocal Feedback
Vocal learning is usually studied in songbirds and humans, species that can form auditory templates by listening to acoustic models and then learn to vocalize to match the template. Most other species are thought to develop vocalizations without auditory feedback. However, auditory input influences the acoustic structure of vocalizations in a broad distribution of birds and mammals. Vocalizations are dened here as sounds generated by forcing air past vibrating membranes. A vocal motor program may generate vocalizations such as crying or laughter, but auditory feedback may be required for matching precise acoustic features of vocalizations. This chapter discriminates limited vocal learning, which uses auditory input to fine-tune acoustic features of an inherited auditory template, from complex vocal learning, in which novel sounds are learned by matching a learned auditory template. Two or three songbird taxa and four or ve mammalian taxa are known for complex vocal learning. A broader range of mammals converge in the acoustic structure of vocalizations when in socially interacting groups, which qualifies as limited vocal learning. All birds and mammals tested use auditory-vocal feedback to adjust their vocalizations to compensate for the effects of noise, and many species modulate their signals as the costs and benefits of communicating vary. This chapter asks whether some auditory-vocal feedback may have provided neural substrates for the evolution of vocal learning. Progress will require more precise definitions of different forms of vocal learning, broad comparative review of their presence and absence, and behavioral and neurobiological investigations into the mechanisms underlying the skills.PostprintPeer reviewe
Age related decline in female lar gibbon great call performance suggests that call features correlate with physical condition
Background: White-handed gibbons (Hylobates lar) are small Asian apes known for living in stable territories and producing loud, elaborate vocalizations (songs), often in well-coordinated male/female duets. The female great call, the most conspicuous phrase of the repertoire, has been hypothesized to function in intra-sexual territorial defense. We therefore predicted that characteristics of the great call would correlate with a caller’s physical condition, and thus might honestly reflect resource holding potential (RHP). Because measurement of RHP is virtually impossible for wild animals, we used age as a proxy, hypothesizing that great call climaxes are difficult to produce and maintain over time, and that older adults will therefore perform lower quality great calls than young adults. To test this we analyzed the great call climaxes of 15 wild lar gibbon females at Khao Yai National Park, Thailand and 2 captive females at Leo Conservation Center, Greenwich, CT. Results: Findings show that call climaxes correlate with female age, as young animals (n = 8, mean age: 12.9 years) produced climaxes with a higher frequency range (delta F0), maximum F0 frequency and duty cycle than old animals (n = 9, mean age: 29.6 years). A permuted discriminant function analysis also correctly classified calls by age group. During long song bouts the maximum F0 frequency of great call climaxes’ also decreased. Additional data support the hypothesis that short high notes, associated with rapid inhalation as an individual catches its breath, reflect increased caller effort. Older females produced more high notes than younger females, but the difference only approached statistical significance, suggesting that calling effort may be similar across different ages. Finally, for the first time in this species, we measured peak intensity of calls in captive females. They were capable of producing climaxes in excess of 100 dB at close range (2.7 m). Conclusions: Age and within-bout differences in the lar gibbon great call climax suggest that call features correlate with physical condition and thus the call may have evolved as an honest signal in the context of intra-sexual territorial defense and possibly also in male mate choice via sexual selection, although further testing of these hypotheses is necessary.
Results: Findings show that call climaxes correlate with female age, as young animals (n = 8, mean age: 12.9 years) produced climaxes with a higher frequency range (delta F0), maximum F0 frequency and duty cycle than old animals (n = 9, mean age: 29.6 years). A permuted discriminant function analysis also correctly classified calls by age group. During long song bouts the maximum F0 frequency of great call climaxes’ also decreased. Additional data support the hypothesis that short high notes, associated with rapid inhalation as an individual catches its breath, reflect increased caller effort. Older females produced more high notes than younger females, but the difference only approached statistical significance, suggesting that calling effort may be similar across different ages. Finally, for the first time in this species, we measured peak intensity of calls in captive females. They were capable of producing climaxes in excess of 100 dB at close range (2.7 m).
Conclusions: Age and within-bout differences in the lar gibbon great call climax suggest that call features correlate with physical condition and thus the call may have evolved as an honest signal in the context of intra-sexual territorial defense and possibly also in male mate choice via sexual selection, although further testing of these hypotheses is necessary
Egg removal and intraspecific brood parasitism in the European starling ( Sturnus vulgaris )
From 1983 to 1986 we monitored 284 European starling ( Sturnus vulgaris ) nests in New Jersey for evidence of intraspecific brood parasitism and egg removal during the laying period. Egg removal occurred significantly more often at nests where intraspecific brood parasitism was detected (12 of 35 nests, 34%) than at unparasitized nests (23 of 249 nests, 9%). Brood parasitism (92% of parasitized nests) and egg removal (74% of nests with egg removal) were most common at nests where egg laying began in April of each year (i.e., early nests). Egg removal occurred at 26 (19%) and brood parasitism at 32 (23%) of 138 early nests. Both brood parasitism and egg removal were concentrated during the first four days in the laying period when brood parasitism is most likely to be successful and when host nests are most vulnerable to parasitism (Romagnano 1987). Both parasitism and removal usually involved a single egg at each nest. We detected brood parasitism and egg removal on the same day at five of 12 nests (42%) where both were observed. Because starlings do not remove foreign eggs from their nests once they begin laying (Stouffer et al. 1987) we hypothesize that parasite females sometimes removed host eggs while parasitizing nests.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46889/1/265_2004_Article_BF00295201.pd
Low Frequency Groans Indicate Larger and More Dominant Fallow Deer (Dama dama) Males
Background: Models of honest advertisement predict that sexually selected calls should signal male quality. In most vertebrates, high quality males have larger body sizes that determine higher social status and in turn higher reproductive success. Previous research has emphasised the importance of vocal tract resonances or formant frequencies of calls as cues to body size in mammals. However, the role of the acoustic features of vocalisations as cues to other quality-related phenotypic characteristics of callers has rarely been investigated. Methodology/Principal Findings: We examined whether the acoustic structure of fallow deer groans provides reliable information on the quality of the caller, by exploring the relationships between male quality (body size, dominance rank, and mating success) and the frequency components of calls (fundamental frequency, formant frequencies, and formant dispersion). We found that body size was not related to the fundamental frequency of groans, whereas larger males produced groans with lower formant frequencies and lower formant dispersion. Groans of high-ranking males were characterised by lower minimum fundamental frequencies and to a lesser extent, by lower formant dispersions. Dominance rank was the factor most strongly related to mating success, with higher-ranking males having higher mating success. The minimum fundamental frequency and the minimum formant dispersion were indirectly related to male mating success (through dominance rank). Conclusion/Significance: Our study is the first to show that sexually selected vocalisations can signal social dominance in mammals other than primates, and reveals that independent acoustic components encode accurate information on different phenotypic aspects of male quality
How a songbird with a continuous singing style modulates its song when territorially challenged
From Social Network (Centralized vs. Decentralized) to Collective Decision-Making (Unshared vs. Shared Consensus)
Relationships we have with our friends, family, or colleagues influence our personal decisions, as well as decisions we make together with others. As in human beings, despotism and egalitarian societies seem to also exist in animals. While studies have shown that social networks constrain many phenomena from amoebae to primates, we still do not know how consensus emerges from the properties of social networks in many biological systems. We created artificial social networks that represent the continuum from centralized to decentralized organization and used an agent-based model to make predictions about the patterns of consensus and collective movements we observed according to the social network. These theoretical results showed that different social networks and especially contrasted ones – star network vs. equal network - led to totally different patterns. Our model showed that, by moving from a centralized network to a decentralized one, the central individual seemed to lose its leadership in the collective movement's decisions. We, therefore, showed a link between the type of social network and the resulting consensus. By comparing our theoretical data with data on five groups of primates, we confirmed that this relationship between social network and consensus also appears to exist in animal societies
Food site residence time and female competitive relationships in wild gray-cheeked mangabeys (Lophocebus albigena)
Authors of socioecological models propose that food distribution affects female social relationships in that clumped food resources, such as fruit, result in strong dominance hierarchies and favor coalition formation with female relatives. A number of Old World monkey species have been used to test predictions of the socioecological models. However, arboreal forest-living Old World monkeys have been understudied in this regard, and it is legitimate to ask whether predominantly arboreal primates living in tropical forests exhibit similar or different patterns of behavior. Therefore, the goal of our study was to investigate female dominance relationships in relation to food in gray-cheeked mangabeys (Lophocebus albigena). Since gray-cheeked mangabeys are largely frugivorous, we predicted that females would have linear dominance hierarchies and form coalitions. In addition, recent studies suggest that long food site residence time is another important factor in eliciting competitive interactions. Therefore, we also predicted that when foods had long site residence times, higher-ranking females would be able to spend longer at the resource than lower-ranking females. Analyses showed that coalitions were rare relative to some other Old World primate species, but females had linear dominance hierarchies. We found that, contrary to expectation, fruit was not associated with more agonism and did not involve long site residence times. However, bark, a food with a long site residence time and potentially high resource value, was associated with more agonism, and higher-ranking females were able to spend more time feeding on it than lower-ranking females. These results suggest that higher-ranking females may benefit from higher food and energy intake rates when food site residence times are long. These findings also add to accumulating evidence that food site residence time is a behavioral contributor to female dominance hierarchies in group-living species
Effects of the Distribution of Female Primates on the Number of Males
The spatiotemporal distribution of females is thought to drive variation in mating systems, and hence plays a central role in understanding animal behavior, ecology and evolution. Previous research has focused on investigating the links between female spatiotemporal distribution and the number of males in haplorhine primates. However, important questions remain concerning the importance of spatial cohesion, the generality of the pattern across haplorhine and strepsirrhine primates, and the consistency of previous findings given phylogenetic uncertainty. To address these issues, we examined how the spatiotemporal distribution of females influences the number of males in primate groups using an expanded comparative dataset and recent advances in Bayesian phylogenetic and statistical methods. Specifically, we investigated the effect of female distributional factors (female number, spatial cohesion, estrous synchrony, breeding season duration and breeding seasonality) on the number of males in primate groups. Using Bayesian approaches to control for uncertainty in phylogeny and the model of trait evolution, we found that the number of females exerted a strong influence on the number of males in primate groups. In a multiple regression model that controlled for female number, we found support for temporal effects, particularly involving female estrous synchrony: the number of males increases when females are more synchronously receptive. Similarly, the number of males increases in species with shorter birth seasons, suggesting that greater breeding seasonality makes defense of females more difficult for male primates. When comparing primate suborders, we found only weak evidence for differences in traits between haplorhines and strepsirrhines, and including suborder in the statistical models did not affect our conclusions or give compelling evidence for different effects in haplorhines and strepsirrhines. Collectively, these results demonstrate that male monopolization is driven primarily by the number of females in groups, and secondarily by synchrony of female reproduction within groups
An Individual-Oriented Model on the Emergence of Support in Fights, Its Reciprocation and Exchange
Complex social behaviour of primates has usually been attributed to the operation of complex cognition. Recently, models have shown that constraints imposed by the socio-spatial structuring of individuals in a group may result in an unexpectedly high number of patterns of complex social behaviour, resembling the dominance styles of egalitarian and despotic species of macaques and the differences between them. This includes affiliative patterns, such as reciprocation of grooming, grooming up the hierarchy, and reconciliation. In the present study, we show that the distribution of support in fights, which is the social behaviour that is potentially most sophisticated in terms of cognitive processes, may emerge in the same way. The model represents the spatial grouping of individuals and their social behaviour, such as their avoidance of risks during attacks, the self-reinforcing effects of winning and losing their fights, their tendency to join in fights of others that are close by (social facilitation), their tendency to groom when they are anxious, the reduction of their anxiety by grooming, and the increase of anxiety when involved in aggression. Further, we represent the difference in intensity of aggression apparent in egalitarian and despotic macaques. The model reproduces many aspects of support in fights, such as its different types, namely, conservative, bridging and revolutionary, patterns of choice of coalition partners attributed to triadic awareness, those of reciprocation of support and ‘spiteful acts’ and of exchange between support and grooming. This work is important because it suggests that behaviour that seems to result from sophisticated cognition may be a side-effect of spatial structure and dominance interactions and it shows that partial correlations fail to completely omit these effects of spatial structure. Further, the model is falsifiable, since it results in many patterns that can easily be tested in real primates by means of existing data
- …
