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Abstract In songbirds of the temperate zone, often only
males sing and their songs serve to attract females and to deter
territorial rivals. Inmany species, males vary certain aspects of
their singing behavior when engaged in territorial interactions.
Such variation may be an honest signal of the traits of the
signaler, such as fighting strength, condition, or aggressive
motivation, and may be used by receivers in decisions on
whether to retreat or to escalate a fight. This has been studied
intensively in species that sing discontinuously, in which
songs are alternating with silent pauses. We studied contextual
variation in the song of skylarks (Alauda arvensis), a songbird
with a large vocal repertoire and a continuous and versatile
singing style. We exposed subjects to simulated territorial
intrusions by broadcasting conspecific song and recorded their
vocal responses. We found that males sing differently if they
are singing spontaneously with no other conspecific around
than if they are territorially challenged. In this last case, males
produced lower-frequency syllables. Furthermore, they in-
creased the sound density of their song: they increased the
proportion of sound within song. They seem to do so by
singing different elements of their repertoire when singing
reactively. Furthermore, they increased the consistency of
mean peak frequency: they repeated syllable types with less
variability when singing reactively. Such contextual variation
suggests that skylarks might use low frequencies, sound den-
sity, and song consistency to indicate their competitive

potential, and thus, those song features might be important
for mutual assessment of competitive abilities.

Keywords Contextual variation in birdsong . Continuous
singing style . Vocal consistency . Sound density . Alauda
arvensis

Introduction

Acoustic communication helps to resolve conflicts over lim-
ited resources such as mates or breeding sites in diverse
animal taxa such as mammals, birds, frogs, and insects where-
by birdsong is probably the most intensively studied example
(Bradbury and Vehrencamp 1998; Van Staaden et al. 2011). In
many songbirds that breed in the temperate zone, only males
sing and the songs serve to attract females and to repel
territorial rivals (Catchpole and Slater 2008). It has been
shown in many species that the song may vary with the
territorial context: a male may sing differently if he is just
singing spontaneously with no other conspecific around than
if he is actually engaged in a territorial vocal interaction with a
male competitor (reviewed in Vehrencamp 2000; Searcy and
Beecher 2009) and often males increase the intensity of their
songs when interacting with a rival by singing, for example, at
higher rate (Benedict et al. 2012) or at higher amplitude
(Brumm and Todt 2004).

During a territorial conflict, birds vocally communicate
their competitive potential, providing the possibility of mutual
assessment; this helps them in resolving a conflict without
necessarily engaging in costly physical fights (reviewed in
Todt and Naguib 2000; ten Cate et al. 2002). Furthermore,
females might base their reproductive decisions on informa-
tion gained through eavesdropping on such vocal interactions
(e.g., Mennill et al. 2002). Vocal signals used in territorial
interactions may provide information about the physical qual-
ities of the sender such as body size. Correlations between
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song parameters and body size may only become apparent
when birds are advertising such as in purple-crowned fairy-
wrens (Malurus coronatus coronatus, as a songbird example;
Hall et al. 2013) or when they are territorially challenged such
as in African black coucals (Centropus grillii, as a non-
songbird example; Geberzahn et al. 2009; see also the review
of Cardoso 2012). Likewise, vocal signals may provide infor-
mation about an individual’s current aggressive intent, which
may also crucially influence the outcome of a conflict. For
instance, birds may use specific categories of songs to indicate
their aggressiveness (e.g., Järvi et al. 1980; Catchpole 1983;
Nelson and Croner 1991; Staicer 1996; Trillo and Vehrencamp
2005; Anderson et al. 2008). Furthermore, temporal or pattern-
specific adjustment to an opponent’s singing has been
interpreted as a signal for aggressive intent (reviewed in Todt
and Naguib 2000; Searcy and Beecher 2009). A male may
provide such information by adjusting the timing of his own
singing relative to the song of a rival (Naguib and Mennill
2010, but see critique in Searcy and Beecher 2009, 2011).
Another example is vocal matching, i.e., pattern-specific ad-
justment: a male replies to a rival with the same song pattern
that the rival has just sung (e.g., Stoddard et al. 1992; Beecher

et al. 2000; Rogers et al. 2006; Vehrencamp et al. 2007; Price
and Yuan 2011). A prerequisite for temporal and pattern-
specific adjustment is a discontinuous singing style such as in
nightingales (Luscinia megarhynchos; Todt and Naguib 2000)
or in song sparrows (Melospiza melodia; Beecher and Brenowitz
2005). In these species, songs are alternatedwith silent inter-song
pauses, allowing males to avoid complete mutual acoustic over-
lap during vocal interactions, for instance, by inserting their own
songs in the silent pauses of the territorial rival (e.g., Geberzahn
et al. 2013). Previous studies on context-specific variation fo-
cused on birds with the more common, discontinuous singing
style. Thus, it remains an open question how songbirds with a
continuous singing style (syllables are produced continuously
with only short silent intervals between them) signal competitive
ability during territorial interactions. As a first step to address this
question, we here identify song features that vary with the
context in such a songbird species, the skylark (Alauda arvensis).

The skylark is a territorial songbird that breeds in the
temperate zone and usually only males sing. As a species of
the open country, the skylark is one of the few species of
songbirds that perform aerial song displays: they sing at the
same time as they fly. They have a large repertoire of different
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Fig. 1 Oscillograms (top) and spectrographic illustrations (bottom) of
skylark song. a Spontaneous song: singing spontaneously with no other
conspecific around. b Reactive song: song in response to a territorial
playback by the same bird as shown in a. Syllables of the same type are
labeled with the same number, syllables found only in either spontaneous

or reactive song (unshared syllables) are labeled with italic numbers, and
syllables found in both contexts are labeled with bold numbers (note that
some of those shared syllables are not displayed in both excerpts).
Syllable duration is indicated above the oscillograms
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syllable types (>300; Briefer et al. 2008) and they perform
their syllables in a continuous fashion with short intersyllable
intervals (Fig. 1) during a song flight that can last up to 1 h
(NG, personal observation). Twomales singing simultaneous-
ly largely mask each other’s songs. Accordingly, temporal or
pattern-specific adjustment of song seems not to be the pre-
dominant way to vocally interact, although in rare instances,
we observed syllable type matching in naturally occurring
interactions (NG, personal observation).

In the current study, we, therefore, examined other song
parameters that may provide information on the competitive
potential of a male. We focused on spectrotemporal parame-
ters and repertoire parameters such as number of syllables
produced per time unit (syllable rate) and number of syllable
types produced per time unit (indicating song versatility). In
discontinuous singers, the rate of vocalizations can be
assessed both as syllable rate and song rate. Swamp sparrows
(Melospiza georgiana; DuBois et al. 2011) increase syllable
rate and banded wrens (Thryophilus pleurostictus; Vehrencamp
et al. 2013) increase trill syllable rate when challenged by a
territorial playback. An increase of song rate has, for instance,
been described in song sparrows (Kramer et al. 1985) and
canyon wrens (Catherpes mexicanus; Benedict et al. 2012) that
were singing in response to a playback, whereas western mead-
owlarks, Sturnella neglecta, increased versatility when territori-
ally challenged (Falls and d’Agincourt 1982). We also assessed
the sound density, calculated here as the sum of all syllable
durations divided by the overall duration of a given song sample.
This parameter may change concordantly with syllable rate, if
syllables with constant durations are produced at higher rates.
However, if syllable duration and gap duration both vary inde-
pendently, then sound density may quantify a different facet of
signal intensity than syllable rate. Measures related to sound
density have been shown to be intersexually selected (e.g., in
zebra finches, Taeniopygia guttata; Holveck and Riebel 2007)
and tended to covary with body condition of male dark-eyed
juncos (Junco hyemalis; Cardoso et al. 2012). Furthermore, a
similar song measure termed “duty cycle” has been suggested to
convey information about the motivational state of a signaler in
an alarm context (black-capped chickadees, Poecile atricapillus;
Wilson andMennill 2011). Thus, sound density could also carry
such information in a territorial context.

Finally, we assessed vocal consistency, a song feature that
has recently received attention as a possible signal for com-
petitive potential. Vocal consistency refers to the ability to
faithfully replicate the acoustic features of a song from one
rendition to the next (reviewed in Sakata and Vehrencamp
2012). This feature correlates with reproductive success (in
chestnut-sided warblers, Dendroica pensylvanica; Byers
2007) and increases with age and/or dominance in house
wrens (Troglodytes aedon; Cramer 2013a), tropical mocking-
birds (Mimus gilvus; Botero et al. 2009), banded wrens (de
Kort et al. 2009), and great tits (Parus major; Rivera-Gutierrez

et al. 2010). In a recent playback experiment, great tits reacted
more aggressively to song stimuli with a higher consistency,
suggesting that this feature provides information on compet-
itive abilities (Rivera-Gutierrez et al. 2011). Studies on zebra
finches (Sossinka and Böhner 1980) and Bengalese finches
(Lonchura striata var. domestica; Sakata et al. 2008) revealed
that song consistency varies with the context: males sing more
consistently when directing their song to females than when
singing an undirected song. Thus, this trait can vary intrain-
dividually, and this opens the possibility that it may also be
modulated by male skylarks reacting to a territorial challenge.

We recorded songs of male skylarks in two different con-
texts: when they were singing spontaneously, i.e., without any
indication of an interaction with a conspecific, and when they
were singing in response to a playback of conspecific song
simulating a territorial intrusion. We examined whether song
parameters changed when males responded to the playback in
comparison to when they were singing spontaneously. Our
prediction was that, if males use such song parameters to
communicate their competitive ability, then they should mod-
ify song parameters in a context-specific manner.

Methods

Study site, subjects, and songs

The study was conducted on 16 male skylarks at 9 different
locations in the agricultural fields surrounding the University
of Paris 11, Orsay, France, during the 2011 (N=9 subjects, 9
May to 1 July) and 2012 (N=7 subjects, 3 May to 20 June)
breeding seasons. Skylarks are extremely hard to catch during
the breeding season. After a short unsuccessful trial to catch
and ring them in April 2011, we decided to work with
unmarked individuals. However, we are confident that we
were able to identify individual subjects by carefully observ-
ing position and behavior, especially the conspicuous flight
song, repeatedly displayed at a given location. Furthermore,
site fidelity is very strong in breeding skylarks (Delius 1965)
and boundaries between adjoining territories are stable once
territories are established (Aubin 1981). Skylarks migrate
during winter and return to the breeding grounds around
February when they settle in adjacent territories until the end
of July (Delius 1963). Their flight song and, thus, the song
lasts, on average, for 261 s (Hedenström 1995) but can take up
to 1 h (NG, personal observation). A song flight consists of
three characteristic phases: the ascending flight; the level
flight, which makes up the majority of the time spent in the
air; and the descending flight (Hedenström 1995; Linossier et
al. 2013). Skylarks have, on average, 341±21 different sylla-
ble types (Briefer et al. 2008). Following Briefer et al. (2008),
we define a syllable as a continuous trace on the sound
spectrogram (syllable 1 or 2 in Fig. 1a) or a group of
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continuous traces spaced out by <25 ms (syllable 3 or 7
in Fig. 1a). Syllables can be part of a stereotyped
sequence of syllables that recurs in the song (sequence
26–27–28–29–26–30–30–31–32–26–33 in Fig. 1b). Syllables
are either sung with “immediate variety”: males switch to a new
syllable type with each syllable produced or a given syllable
type is repeated several times (“eventual variety,” syllable 10 in
Fig. 1a).

Recording methods for spontaneous singing

Recordings were made at a sample rate of 44.1 kHz using a
SennheiserME62/K6 omnidirectional microphone (frequency
response of 20 Hz to 20 kHz, ±1 dB) mounted on a Telinga
Universal parabola (diameter, 50 cm) and connected to a
Marantz PMD 670 solid-state recorder. We recorded songs
between 0800 and 1300 hours. We observed the behavior of
the subjects and checked whether a male was interacting with
a conspecific (e.g., chasing a conspecific). Spontaneous sing-
ing was defined as singing without any indication of such
interactions.

Playback experiments and recording methods
during playback

We conducted playback experiments to elicit a territorial
response and recorded the song produced by the tested subject
during the playback and in the 10 min after the end of the
presentation of the playback stimulus. Skylarks show a very
clear territorial behavior with stereotyped patterns (Delius
1963). A male usually reacts by flying towards a loudspeaker
simulating an intruder, landing in its vicinity or flying over it
at low height. We considered a male as responding to a
playback if he clearly approached, that is, flew towards the
loudspeaker and sang. Recordings of such reactive song were
made using the same equipment as described previously for
spontaneous song.

In the playback experiments, we broadcast each of two
different stimuli subsequently with a silent pause of 5 min
between stimulus presentations. We broadcast two stimuli to
increase the likelihood of eliciting a vocal response and we
broadcast two different stimuli to avoid habituation (Aubin
1982). Stimuli consisted of conspecific song recorded in our
study population in the same breeding season. For each play-
back experiment, we used a unique set of stimuli recorded
from a unique source male to avoid pseudoreplication (except
for one set of stimuli that was used twice). Stimulus duration
was 85.6±5.1 s (mean±SD) and stimuli were broadcast at an
amplitude of 85.8±8.2 dB (mean±SD) (re. 20 μPa, measured
as peak amplitude from 30 stimuli at 1 m from the loudspeaker
with a Brüel & Kjaer 2235 sound level meter, linear setting).

In 2011, we broadcast stimuli using a Marantz PMD 670
solid-state recorder connected via a 20-m cable to a 10-W

MegaVox Pro MEGA-6000 loudspeaker (frequency response
of 400 Hz to10 kHz, ±3 dB). In 2012, we broadcast stimuli
with a Foxpro Fury GX7 remote-controlled autonomous am-
plifier, connected to a Hortus CT30 loudspeaker (frequency
response of 65 Hz to 21 kHz, ±6 dB). We positioned the
loudspeaker on the ground at approximately 5–10 m into the
subject’s territory. The experimenter stood 20–30 m from the
loudspeaker, recorded the reactive song, and quietly narrated
observed behavior into the silent pauses between the vocalizations.

We recorded spontaneous song before conducting the play-
back experiment to avoid potential long-term effects of the
playback on the song (cf. Schmidt et al. 2007). Furthermore,
we recorded reactive song as promptly as possible after spon-
taneous song in order to minimize potential seasonal effects.
Thus, reactive song was recorded after spontaneous song,
either on the same day (N=8), the following day (N=4), or
on 4, 10, or 14 days (N=1, each) thereafter. In one subject, we
had to record spontaneous song after recording reactive song
and to minimize a potential effect of the playback experiment,
we waited for 7 days before recording spontaneous song.

Song analysis

We used Avisoft SASLAB Pro for song analysis. For each
context and each subject, we selected one song recording with
the highest signal-to-noise ratio (in most cases, this song was
recorded after the end of the playback, as song overlapping
with the playback was usually masked by the playback). The
overall duration of those songs was 175±134 s (mean±SD).
In order to compare songs from the same flight phase, we
confined our analysis to the first 40 s of the song correspond-
ing approximately to the ascending phase of the flight. To
remove unwanted noise, we then high-pass filtered the songs
(cutoff frequency of 1.4 kHz) and labeled syllables according
to their syllable types (Fig. 1). Classification of a total of 6,890
syllables into syllable types was based on visual comparison
of overall frequency modulation shapes in spectrograms by
one observer (NG) who is very experienced with this task. In
order to verify that this approach did not produce idiosyncratic
results (Jones et al. 2001), a second highly experienced ob-
server (TA) who was blind to the context of the recording
controlled the classification of a subset of syllables (947
syllables produced by 2 subjects, corresponding to 14 % of
the total dataset) and agreed in 894 cases (94 % agreement).

We measured temporal parameters by manually delineating
onsets and offsets of syllables in the oscillograms and created
spectrograms to measure mean peak frequency (MPF) (FFT
length, 1,024; frame, 100 %; overlap, 75 %; Hamming win-
dow) using the “automatic parameter measurements setup”
with interactive element separation from section labels, that is,
based on the manual delineation in oscillograms. Temporal
parameters were measured with a resolution of 2.9 ms, and
MPF was measured with a frequency resolution of 43 Hz. We
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measured and calculated the average of the following parame-
ters: syllable duration, gap duration (the interval between syl-
lables), and MPF (see description in Table 1). Furthermore, we
assessed the lowestMPF. From those parameters, we calculated
sound density for the overall song sample (overall sound den-
sity; Table 1). To calculate sound density for subsets of sylla-
bles, we divided the sum of all syllable durations of the relevant
syllable types by the sum of the same syllable durations plus the
subsequent gap durations. We chose the subsequent rather than
the preceding gap duration as only subsequent gap duration
correlates with syllable duration, suggesting a link between
these two parameters (Csicsaky 1978). From the list of labeled
syllables, we also calculated the number of syllables (syllable
rate) and the number of syllable types (our measure of versatil-
ity; see Table 1).

Furthermore, we calculated the coefficient of variation
(CV) for all spectrotemporal parameters (see description in
Table 1). To this end, we selected the three syllable types for
each subject that were produced the most often both in spon-
taneous and reactive singing to calculate the CV based on their
renditions in the 40-s song sample (one subject repeated only
one syllable type several times in both contexts and we, thus,
selected only this one syllable type). Those syllables were
produced equally often in both contexts (spontaneous song
sample, 6.4±2.6 [mean±SD] times; reactive song sample,
5.6±2.4 [mean±SD] times; paired t test: t=−1.55, df=15,
p=0.14). Cramer (2013b) suggested using a combined ap-
proach when measuring consistency of song: next to calculat-
ing the CVs of specific acoustic features, she suggested to use
spectrogram cross-correlation as these two approaches seem
to complement each other. Therefore, on the same dataset of
the three most frequent syllable types, we estimated rendition-
to-rendition consistency of overall syllable shape by means of
spectral cross-correlation. To this end, we used the spectro-
gram cross-correlation function (CCF) within the classifica-
tion option of Avisoft and calculated the averages of all
pairwise comparisons of syllable renditions (see Table 1).

To rule out that our findings were influenced by seasonal or
daytime effects, we tested whether those parameters for which
we found context-specific modulation (lowest MPF, song
density, and CV of MPF) changed with the time of the day
(measured as minutes after sunrise) and the season (measured
as number of days after the start of the experiment). All but 1
of the 12 correlations (3 parameters in each of 2 contexts) were
nonsignificant (mean p=0.51; range, 0.09–0.90). However,
the CVof MPF was negatively correlated with the number of
days after the start of the experiment (Pearson’s product–
moment correlation t=−2.4, df=14, p=0.03). For this param-
eter, we, therefore, included the number of days after the start
of the experiment as a predictor variable in a generalized linear
mixed model (GLMM) (see the “Statistical analysis” section).
Furthermore, we retested lowestMPF, song density, and CVof
MPF using only the subsample of 12 subjects for which

reactive singing was recorded on the same or the following
day as spontaneous singing so that seasonal effects can be
assumed to be negligible.

Additionally, in the case of modulations of the overall sound
density with the context, we were interested in understanding
how subjects would change this parameter. Therefore, we calcu-
lated the sound density for the following subsets of data (see
Table 1): the most frequent syllable type produced in both
contexts, the shared types (syllable types sung in both contexts),
and the unshared syllable types (syllable types sung only in one
context). To calculate sound density for shared and unshared
syllable types, we considered only the first rendition of each
syllable type as a given syllable may be sung more or less
frequent in each context and we wanted to rule out this to affect

Table 1 List and description of song parameters

Song parameters Description

Spectrotemporal parameters

Mean syllable duration
(ms)

Time elapsing from onset to offset of a
syllable, and then averaged across
syllables

Mean gap duration (ms) Time elapsing from offset of a syllable to the
onset of the subsequent syllable, and then
averaged across syllables

Overall sound density
(%)

Sum of all syllable durations divided by
overall duration of the total song sample

Sound density of subset
of syllables (%)

Sum of syllable durations of all relevant
syllable types divided by the sum of
syllable durations and subsequent gap
durations of all relevant syllable types

MPF (kHz) Mean peak frequency, frequency of the
maximum amplitude measured on the
mean spectrum of the entire syllable

Lowest MPF (kHz) MPFwith the smallest value found in a given
sample

Repertoire parameters

Number of syllables Number of syllables in the first 40 s of the
song

Number of syllable
types

Number of different syllable types in the first
40 s of the song

Consistency parameters (for the three most frequent syllable types
produced in both contexts)

CV syllable duration Coefficient of variation of syllable duration

CV gap duration Coefficient of variation of gap duration

CV sound density Coefficient of variation of sound density.
Here, sound density was calculated for
each syllable rendition as the syllable
duration divided by the sum of syllable
duration and subsequent gap duration

CV MPF Coefficient of variation of mean peak
frequency

CCF Cross-correlation function: maximum pixel-
by-pixel similarity of two spectrograms,
measures syllable shape consistency

Behav Ecol Sociobiol (2014) 68:1–12 5



ourmeasure of sound density. If sound density wasmodulated by
changing syllable and gap duration of a given syllable type
relative to each other (for instance, by decreasing gap duration
while keeping syllable duration constant), we expected that the
sound density of the most frequent syllable type and the sound
density of shared syllable types would be different between
spontaneous and reactive song. If, however, birds changed sound
density by switching to another subset of syllables, we expected
that sound density of unshared syllables would differ.

Finally, in the case of modulations of the lowest MPF with
the context, we explored modulation in this parameter in the
subset of the most frequent syllable type as well as the
unshared and shared syllables in order to test whether this
parameter is changed by modifying given syllables or by
switching to other syllables.

Statistical analysis

Statistical analyses were conducted using R2.13.0 (http://
www.r-project.org/). We tested for normality using Shapiro–
Wilk tests. In cases of normal distributions, we used a
paired t test to compare song parameters in spontaneous
and reactive singing and Pearson’s product–moment
correlation to test for correlations with daytime and
season. Where distributions were not normally distributed,
we used paired samples Wilcoxon tests or Spearman’s rank
correlation. When entering several measures per subject
into the analysis, we used generalized linear mixed
models (GLMMs) implemented in R2.13.0 and the add-
on package nlme (Pinheiro et al. 2009). The dependent
variable was the relevant response measure (CCF, CV of
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Table 2 Song parameters in spontaneous and reactive song of skylarks (N=16)

Spontaneous,
mean±SD

Reactive,
mean±SD

t V df p

Spectrotemporal parameters

Syllable duration (ms) 139.77±19.69 142.71±14.38 85 0.38

Gap duration (ms) 46.84±4.67 44.48±3.73 −1.71 15 0.11

Overall sound density (%) 74.51±2.19 75.93±1.62 4.51 15 0.0004a

Lowest MPF (kHz) 2.3±0.2 2.18±0.22 −2.2 15 0.04

Repertoire parameters

Syllable rate (# of syllables) 216±22 215±19 −0.28 15 0.78

Versatility (# of syllable types) 110±29 124±35 1.88 15 0.08

Normally distributed data analyzed by paired t test—t is provided. Non-normally distributed data analyzed byWilcoxon signed rank test—WilcoxonV is
provided. Significant p values are given in italics
a Difference remains significant when retesting with the subset of 12 subjects for which recordings were made with a delay of one day at most
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syllable duration, gap duration, sound density, and MPF);
the independent variable was the context (spontaneous or
reactive singing). Subject identity was a random factor. For
one parameter that changed with season in reactive singing
(CV of MPF), we further included the number of days after
the start of the experiment as predictor. In the full model
for this parameter, the number of days after the start of the
experiment was not significant (p=0.08) and was, therefore,
removed from the final model. All tests were two-tailed. To
control for multiple testing when comparing the sound
density in several different subsets of data, we applied the
Benjamini–Hochberg false discovery rate procedure and
provide adjusted p values in addition to the uncorrected
p values (Benjamini and Hochberg 1995).

Results

Spectrotemporal parameters

Skylarks increased the overall sound density in the first 40 s of
their flight song when singing in response to the territorial
playback. Changes were small in each subject, but all males
(except two) sang with higher overall sound density in reac-
tive than in spontaneous song, and this difference was highly
significant (Table 2; Fig. 2). Mean values for syllable duration
were slightly larger and mean values for gap duration were
slightly smaller in reactive than in spontaneous song, but these
differences were not significant when looking at the whole
song sample (Table 2). Taken together, these small effects
might nevertheless have contributed to the increase in sound
density. Likewise, skylarks modulated the lowest MPF with
the context: when singing reactively, the lowest value of MPF
was significantly lower than when singing spontaneously
(Table 2; Fig. 3).

Repertoire parameters

Skylarks did not sing more syllables in the first 40 s of
their flight song when singing in response to the terri-
torial playback than when singing spontaneously. How-
ever, the number of different syllable types produced
during reactive songs tended to be higher than in spon-
taneous songs (Table 2); thus, their songs tended to be
more versatile when singing in response to the simula-
ted territorial intrusion.

Consistency of singing

As a measure for rendition-to-rendition consistency, we cal-
culated the CV of spectrotemporal parameters in the three
syllables which were produced most often by a given subject
in both contexts. We found that the CV was significantly lower
in reactive compared to spontaneous song for MPF (Table 3;
Fig. 4). For the parameters syllable duration, gap duration, and
sound density, we did not detect a significant difference in the
CV between spontaneous and reactive singing (Table 3). When
applying spectral cross-correlation as an additional approach to
assess consistency of overall syllable shape, we did not detect a
significant difference between spontaneous and reactive singing
(Table 3).

Sound density and lowest MPF of most frequent, shared,
and unshared syllables

When comparing the syllable types used both during sponta-
neous and reactive singing (shared syllable types), we found
that subjects used between 7 and 102 syllable types (mean±
SD=41±24; cf. syllables labeled with bold numbers in Fig. 1)
in both contexts. Other syllable types could be identified only

Table 3 Consistency parameters in spontaneous and reactive song of
skylarks (N=16)

Spontaneous,
mean±SD

Reactive,
mean±SD

F p

Coefficient of variation

CV syllable duration 0.06±0.04 0.06±0.05 F1,75=0.17 0.68

CV gap duration 0.13±0.09 0.11±0.08 F1,72=1.42 0.24

CV sound density 0.05±0.03 0.04±0.02 F1,72=2.66 0.11

CV MPF 0.08±0.06 0.05±0.04 F1,75=6.39 0.01a

Spectral cross-correlation

CCF 0.75±0.15 0.76±0.16 F1,75=0.132 0.72

Test statistics of GLMMs. Significant p values are given in italics
a Difference remains significant when retesting with the subset of 12
subjects for which recordings were made with a delay of 1 day at most
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Fig. 4 Variability of MPF decreased in response to territorial threats. CV
for the parameter MPF in spontaneous and reactive singing skylarks. For
statistics, see Table 3
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in one of the two contexts (unshared syllable types: spontane-
ous singing mean±SD=69±16, reactive singing mean±-
SD=83±32; cf. syllables labeled with italic numbers in
Fig. 1). To disentangle how skylarks arrive at lower MPF in
reactive songs, we examined contextual variation in the lowest
MPF for different subsets of syllables. However, neither did
we detect a significant difference between spontaneous and
reactive song for the most frequently performed syllable type
(paired t test, t=0.94, df=15, p=0.36), nor in the subsets of
shared and unshared syllable types (shared: paired t test,
t=−0.61, df=15, p=0.55; unshared: paired t test, t=−0.79,
df=15, p=0.44).

To understand how skylarks increased the overall
sound density, we examined contextual variation in the
sound density for different subsets of syllables. First, we
compared the one shared syllable type produced most
often by a given subject in both contexts. Sound density
for the most frequently performed syllable type did not
differ between spontaneous and reactive song (Table 4).
Furthermore, sound density did not vary with the con-
text when considering the subset of syllables that were
used both in spontaneous and reactive song (shared
syllable types; Table 4). In contrast, syllables only used
in reactive song had a significantly higher sound density
than those syllables only produced in spontaneous song
(unshared syllable types; Table 4). To further elucidate
this last finding, we compared syllable and gap duration
for the same subset of unshared syllable types, as those
two parameters should determine the sound density.
Syllable types produced uniquely in reactive singing
were indeed followed by smaller intersyllable gaps than
those produced uniquely in spontaneous singing (spontane-
ous singing mean±SD=47.67±5.04 ms, reactive singing
mean±SD=44.49±4.19 ms, paired t test: t=−2.43, df=15,
p=0.03; cf. Fig. 1). In contrast, the duration of such syllables
did not differ between the two contexts (spontaneous singing
mean±SD=151.16±19.19 ms, reactive singing mean±
SD=151.32±13.75 ms, paired t test: t=0.04, df=15, p=0.97).

Discussion

Skylarks increased the overall sound density in the ascending
phase of their flight song when singing in response to a territorial
challenge: they produced a higher proportion of sound. We did
not find an increase in the sound density of the one syllable that
they produced most often in both contexts, nor did they seem to
change the sound density in those syllables that they used in both
contexts (shared syllables). However, sound density was higher
in syllables uniquely produced during reactive singing compared
to those uniquely produced in spontaneous singing (unshared
syllables), and this was due to the former syllables being follow-
ed by shorter intersyllable gaps. Furthermore, skylarks decreased
the lowest MPF when singing reactively while all other
spectrotemporal parameters did not vary significantly with the
context. We could not detect a change in the syllable rate when
birds were singing reactively. However, the number of different
syllable types that they produced tended to be higher; thus, their
song tended to be more versatile when singing in response to the
territorial playback. Finally, males produced their three most
frequent syllables with lower rendition-to-rendition variability
corresponding to higher consistency in terms of repeating more
faithfully the MPF of these syllables when singing reactively.
Such consistency in song structure was restricted to theMPF: we
could not detect differences in the rendition-to-rendition variability
of the syllable duration, the gap duration, the sound density, and in
syllable shape consistency (the latter being assessed by spectral
cross-correlation).

Searcy and Beecher (2009) postulated three criteria that
should be met to establish that a given singing behavior is an
aggressive signal. Signal value should increase in aggressive
contexts (context criterion). The signal should predict aggres-
sive escalation by the signaler (predictive criterion). Differen-
tial signal values should elicit differential responses (response
criterion), and in fact, most playbacks exposing subjects to such
different signal values elicited differential responses of re-
ceivers (reviewed in Searcy and Beecher 2009, but see DuBois
et al. 2010, 2011; Cramer 2013c). In the current study, we

Table 4 Skylarks increased sound density by performing different syllable types in reactive song

Spontaneous,
mean±SD

Reactive,
mean±SD

t df p Adjusted p

Sound density (%)

Overall 74.51±2.19 75.93±1.62 4.51 15 0.0004 0.002

Most frequent syllable type 65.08±8.44 65.53±9.97 0.4596 15 0.65 0.65

Shared syllable types 75.81±1.97 76.20±2.89 0.6868 15 0.50 0.65

Unshared syllable types 75.73±1.84 77.01±1.57 2.8041 15 0.01 0.03

Sound density in overall sample and for subsets of most frequent, shared, and unshared song types in spontaneous and reactive song of skylarks (N=16).
Data were analyzed by paired t test. Significant p values are given in italics
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showed that sound density, vocal consistency, and the lowest
MPF each meet the context criterion and are, therefore, likely
candidates to serve as signals for the competitive potential of
the signaler. In future studies, we will examine whether such
variation is meaningful to skylarks; that is, whether receivers
respond differently when exposed to playback stimuli that vary
accordingly. Furthermore, it would be interesting to correlate
data on male quality such as morphometric and/or fitness data
with those candidate song traits and their variability in order to
establish that they serve as indicators for male quality.

Mean peak frequency

The lowest MPF that skylarks produced varied with the context:
when singing in response to a territorial playback, the lowest
MPF was smaller than when singing spontaneously. However,
we have to acknowledge that this effect was not very strong and
that we could not confirm this finding when retesting the subset
of 12 subjects for which spontaneous and reactive song were
recorded within a short period of time. We also did not detect
differences of the lowest MPF in the subset of the most frequent-
ly performed syllable type and the subset of the shared syllable
types. Thus, skylarks seem not tomodify given syllables to lower
the frequency when singing reactively. Also, they do not seem to
switch to particular low-frequency syllables when singing reac-
tively as we could also not detect differences of the lowest MPF
in the subset of unshared syllables. Thus, our data do not allow
disentangling how exactly skylarks modulate the lowest MPF.

Several previous studies have reported that birds decrease
the frequency parameters of their vocalizations in a territorial
interaction (black-capped chickadees, P. atricapillus; Hill and
Lein 1987; Otter et al. 2002; Montezuma Oropendolas,
Psarocolius montezuma, Price et al. 2006; scops owls, Otus
scops, Hardouin et al. 2007; African black coucals, C. grillii,
Geberzahn et al. 2009, 2010). Such context-specific variation
has usually been interpreted as providing information on the
competitive potential in the framework of a size–frequency
allometry: only large individuals having a large vocal organ
and a large vocal tract may be able to produce low-frequency
vocalizations. Whereas such a size–frequency allometry is well
established for non-songbirds, its existence in oscine songbirds
is a matter of debate (Patel et al. 2010; Cardoso 2012; Hall et al.
2013). Our results for skylarks provide some evidence in sup-
port of size–frequency allometry in songbirds, but do not allow
drawing very firm conclusions.

Vocal consistency of mean peak frequency

Male skylarks produced their most frequent syllables with
higher consistency in terms of repeating more faithfully the
MPFwhen singing reactively. Song consistency increased with
age in tropical mockingbirds and males producing more con-
sistent songs tended to have higher dominance status and

reproductive success (Botero et al. 2009). The authors conclud-
ed that consistency may indicate the integrity of brain function
in birds. Singing consistent songs requires not only consistent
vocal motor commands generated by the nervous system but,
furthermore, the coordination of syringeal and respiratory mus-
cle activities and muscular resistance to motor fatigue
(Lambrechts and Dhondt 1988; Suthers and Zollinger 2008).
Accordingly, vocal consistency could be a signal for male
quality, as only males in which all those requirements are met
should be able to produce highly consistent song (cf. Podos
et al. 2009; Sakata and Vehrencamp 2012). Findings in great
tits support such reasoning as males reacted more aggressively
to playback song stimuli with high versus low consistency,
suggesting that this feature indeed provides information on
competitive abilities (Rivera-Gutierrez et al. 2011).

Context-dependent variation in vocal consistency has been
described in intersexual communication in estrildid finches and
has become a prominent model to study neuronal mechanisms
controlling song plasticity (Kao et al. 2005; Ölveczky et al.
2005; Kao and Brainard 2006; Teramitsu and White 2006;
Sakata et al. 2008; Leblois et al. 2010). Those studies suggest
that variability in adult song enables birds to refine and main-
tain consistent vocal performance by means of auditory feed-
back and reinforcement mechanisms (Sakata and Vehrencamp
2012) and such variable song, thus, corresponds to a form of
“motor exploration” (e.g., Tumer and Brainard 2007; Sakata
et al. 2008; Woolley and Doupe 2008). In contrast, song
produced with high consistency reflects a “performance state”
and is subject to intersexual selection: female zebra finches
prefer the highly consistent female-directed song over the more
variable undirected song (Woolley andDoupe 2008). Likewise,
the higher vocal plasticity in the song of spontaneously singing
skylarks could reflect a form of “motor exploration” and could
allow the birds to adjust and refine their song, whereas they
would switch to the “performance state” during a territorial
intrusion, in whichMPF is performed more consistently, which
in turn might be the more effective territorial signal.

Sound density

Almost all subjects increased the overall sound density in a
context-specific manner, revealing a highly significant differ-
ence. By doing so, they increased the intensity of their territorial
signal. Males of different songbird species have been shown to
increase the intensity of their songs when interacting with a rival,
for instance, by increasing the song rate (Benedict et al. 2012) or
amplitude (Brumm and Todt 2004). Such an increase in song
intensity has been shown to play a role not only in territorial
aggression (e.g., Brumm and Ritschard 2011) but also in female
song preferences (Holveck and Riebel 2007; Ritschard et al.
2010). Signalers from a wide range of species have been shown
to encode motivational information by increasing the sound
density (Owings and Morton 1998). For instance, Wilson and
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Mennill (2011) showed that black-capped chickadees responded
more strongly to calls with a higher sound density in an alarm
context and suggested that variation in sound density provided
information about the motivational state of the signaler. Thus,
skylarks might be more motivated to defend their territory when
they are in danger of losing it and express this heightened
motivation by increasing the sound density of their song.

Alternatively, the sound density could convey information
about the physical quality of a male. Increasing the proportion
of time when sound is produced necessarily reduces the pro-
portion of time when no sound is produced. Such silent periods
usually correspond to inspiration (Franz and Goller 2002).
Especially during the ascending phase of the flight song, it
could, therefore, be difficult to increase the sound density, and
perhaps, only males of high physical quality are able to do so.

Furthermore, increasing the sound density could increase
the masking effect on the song of the rival: producing more
sound per unit of time should increase the proportion of
syllables that are not overlapped by syllables of the rival
(assuming a static sound density for the rival), whereas it
should increase the proportion of syllables of the rival being
masked. This idea concerns, however, only reactive song
actually overlapping with the song of an intruder, in our case
simulated by the playback song. We mostly got around such
overlapping signaling in the current study by selecting songs
for analysis with the highest signal-to-noise ratio correspond-
ing to nonoverlapping song. The fact that sound density
increased in our sample, thus, suggests that this increase
cannot only be explained by such a mechanism of masking
avoidance alone.

A closer look at different subsets of syllables revealed that
the sound density was mainly increased for those syllable types
that were uniquely detected in reactive singing. Thus, skylarks
seem to selectively perform syllable types with high sound
density in their song rather than modifying syllable and gap
duration within a given syllable type. The question that remains
is how the sound density can vary for different syllable types.
Perhaps skylarks can decrease intersyllable gaps (and thereby
increase sound density) during reactive singing by choosing
syllable sequences in which the differences of frequency be-
tween the end of a given syllable and the start of the subsequent
syllable is minimized (cf. Podos et al. 2009): if syllables end
and begin at approximately the same frequency, the vocal
apparatus should already be in an appropriate configuration
for the production of the subsequent syllable which should
allow for a short gap duration (cf. Fig. 1 in Podos et al. 2009).

Syllable rate and versatility

In discontinuous singers, the rate of vocalizations is usually
assessed as the number of either syllables or songs per unit of
time and both have been shown to increase in a territorial
context (reviewed in Vehrencamp 2000; Searcy and Beecher

2009). In a continuous singer, this rate is measured as syllable
rate and skylarks kept this measure at the same level when
singing in response to the territorial playback. This is in contrast
to findings on discontinuous singers. Syllable rate might be a
less flexible trait in skylarks because of their continuous singing
style. In particular, it could be difficult for the birds to increase
the syllable rate and the sound density at the same time as this
would only be possible by decreasing dramatically the silent
gaps between syllables corresponding to inspiration. In contrast,
we detected a tendency to increase song versatility: skylarks
tended to sing more different syllable types when singing reac-
tively, which could be a means of displaying a closer approxi-
mation of the singer’s full repertoire size. This could in turn be a
signal of male quality (Spencer et al. 2004; Reid et al. 2005).
Indeed, larger repertoires have been shown to be more efficient
territorial signals in great tits (Krebs et al. 1978). In skylarks, it is
obvious that males change the composition of syllables pro-
duced in a territorial context (see the previous section); whether
the increase in versatility is a signal in itself or might be a by-
product of producing selectively certain syllables to increase the
sound density remains an open question.

Conclusions

Modulation in the song in response to a territorial challenge
has been studied intensively in songbird species with a dis-
continuous singing style. Such modulation allows birds to
vocally exchange information about their competitive poten-
tials and thereby resolve territorial conflicts vocally. For in-
stance, birds may adjust the timing of their song or the song
pattern to an opponent’s singing, allowing them to signal their
aggressive intent. This communication strategy is, however,
only amenable to discontinuous singing. Here, we reported on
context-specific variation in the song of skylarks, a songbird
with a continuous singing style. We described three parame-
ters in the song of this species: lowest MPF, vocal consistency,
and sound density that changed in a context-specific manner.
This raises the possibility that skylarks might use modulation
in those parameters to signal their competitive potential in a
territorial interaction.
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